Bài 1. Cho hai đường thẳng
(d): y = (2m-3)x +5.
(d’): y= 3x – 5 . Tìm m để:
(d) cắt (d’) tại 1 điểm trên trục hoành
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) d đi qua M (m2 ; 1) ta có:
2m2 + 3m - 4 = 1
=> 2m2 +3m -5 = 0
m1 = 1 ; m2 = -5/2
2) d giao với hoành độ thì giao điểm có tọa độ (a; 0) và a>1
ta có : 0 = 2a +3m -4 => \(a=\frac{4-3m}{2}\)
\(a>1\Leftrightarrow\frac{4-3m}{2}>1\Leftrightarrow4-3m>2\Leftrightarrow-3m>-2\Leftrightarrow m< \frac{2}{3}\)
Vậy m<2/3 thì .............
3) không hiểu ý câu hỏi
Bài 1:
Đặt: (d): y = (m+5)x + 2m - 10
Để y là hàm số bậc nhất thì: m + 5 # 0 <=> m # -5
Để y là hàm số đồng biến thì: m + 5 > 0 <=> m > -5
(d) đi qua A(2,3) nên ta có:
3 = (m+5).2 + 2m - 10
<=> 2m + 10 + 2m - 10 = 3
<=> 4m = 3
<=> m = 3/4
(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:
9 = (m+5).0 + 2m - 10
<=> 2m - 10 = 9
<=> 2m = 19
<=> m = 19/2
(d) đi qua điểm 10 trên trục hoành nên ta có:
0 = (m+5).10 + 2m - 10
<=> 10m + 50 + 2m - 10 = 0
<=> 12m = -40
<=> m = -10/3
(d) // y = 2x - 1 nên ta có:
\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\) <=> \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\) <=> \(m=-3\)