1) Tìm số tự nhiên a,b biết: BCNN của a, b= 300 : ƯCLN của a,b= 15 vfa a+15=b
2) Tìm số nguyên n sao cho (n^2+3) chia hết cho (n+1)
3) Tìm số nguyên tố n sao cho 3p+7 là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d) Ta có: \(n^2+5n+9⋮n+3\)
\(\Leftrightarrow n^2+3n+2n+6+3⋮n+3\)
\(\Leftrightarrow n\left(n+3\right)+2\left(n+3\right)+3⋮n+3\)
mà \(n\left(n+3\right)+2\left(n+3\right)⋮n+3\)
nên \(3⋮n+3\)
\(\Leftrightarrow n+3\inƯ\left(3\right)\)
\(\Leftrightarrow n+3\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{-2;-4;0;-6\right\}\)
Vậy: \(n\in\left\{-2;-4;0;-6\right\}\)
d) Ta có: n2+5n+9⋮n+3n2+5n+9⋮n+3
⇔n2+3n+2n+6+3⋮n+3⇔n2+3n+2n+6+3⋮n+3
⇔n(n+3)+2(n+3)+3⋮n+3⇔n(n+3)+2(n+3)+3⋮n+3
mà n(n+3)+2(n+3)⋮n+3n(n+3)+2(n+3)⋮n+3
nên 3⋮n+33⋮n+3
⇔n+3∈Ư(3)⇔n+3∈Ư(3)
⇔n+3∈{1;−1;3;−3}
bài 2
x+(x+1)+(x+2)+....+(x+30)=1240
\(\Rightarrow\)(x+x+x+...+x)+(1+2+3+....+30)=1240
có 31 SH có 30 SH
\(\Rightarrow\)31x+(30+1)x30:2=1240
\(\Rightarrow\)31x+465=1240
\(\Rightarrow31x=1240-465\)
\(\Rightarrow31x=775\)
\(\Rightarrow x=775:31\)
\(\Rightarrow x=25\)
Vậy x=25