K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2016

\(\Leftrightarrow\int^{xz+xy=44}_{yz+xz=23}\Rightarrow\int^{xy^2+\left(x^2-44\right)y-21x=0}_{\left(\sqrt{x^4-4x^2+1936+}+x^2+44\right)z-46x=0\Leftrightarrow\left(\sqrt{x^4-4x^2+1936}-x^2-44\right)z-46x=0}\)


\(\Rightarrow\left[y=\frac{-\sqrt{x^4-4x^2+1936}x^2-44}{2x},z=\frac{-46x}{\sqrt{x^4-4x^2+1936}-x^2-44}\right]\)(

loại )

\(\Rightarrow\left[y=\frac{-\sqrt{x^4-4x^2+1936}+x^2-44}{2x},z=\frac{-46x}{\sqrt{x^4-4x^2+1936}-x^2-44}\right]\)(loại)

=>x,y,z vô nghiệm hoặc đề sai

2 tháng 3 2016

x=22

y=1

z=1

Hệ phương trình \(\Leftrightarrow\hept{\begin{cases}x^2+xy+xz=48\left(1\right)\\4xy+4y^2+4yz=48\end{cases}}\)

\(\Rightarrow x^2+xy+xz-4xy-4y^2-4yz=0\)

\(\Leftrightarrow x^2-3xy-4y^2+xz-4yz=0\)

\(\Leftrightarrow\left(x-4y\right)\left(x+y+z\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=4y\\x+y+z=0\end{cases}}\)

Với x+y+z=0

\(\left(1\right)\Leftrightarrow x\left(x+y+z\right)=48\Leftrightarrow0x=48\)(vô lí)

=> x=4y

Đến đây đơn giản rồi nhé

25 tháng 5 2021

PT (1) \(\Leftrightarrow2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

Nhận thấy VT\(\ge\)0 với mọi x,y,z

Dấu = xảy ra <=> x=y=z

Thay x=y=z vào pt (2) ta được:

\(3x^{2021}=3^{2022}\) \(\Leftrightarrow x^{2021}=3^{2021}\) \(\Leftrightarrow x=3\)

\(\Rightarrow x=y=z=3\)

Vậy (x;y;z)=(3;3;3)

1 tháng 9 2017

\(x^2+y^2+z^2=xy+yz+xz=1< =>\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0< =>x=y=z=1....\\ .\)

NV
12 tháng 1 2021

\(\Leftrightarrow\left\{{}\begin{matrix}xy+x+y+1=2\\yz+y+z+1=5\\zx+z+x+1=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)\left(y+1\right)=2\\\left(y+1\right)\left(z+1\right)=5\\\left(z+1\right)\left(x+1\right)=10\end{matrix}\right.\) (1)

Nhân vế với vế: \(\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)\right]^2=100\)

\(\Leftrightarrow\left(x+1\right)\left(y+1\right)\left(z+1\right)=10\) (2)

Chia vế cho vế của (2) cho từng pt của (1):

\(\Rightarrow\left\{{}\begin{matrix}z+1=5\\x+1=2\\y+1=1\end{matrix}\right.\) \(\Rightarrow\left(x;y;z\right)=\left(1;0;4\right)\) (loại)

Hệ vô nghiệm do \(y>0\)

27 tháng 6 2018

cộng 1 vào mỗi pt sau đó phân tích đa thức thành nhân tử ở mỗi pt. rồi nhân các hạng tử vừa phân tích của 3 pt lại rồi bỏ mũ 2. Sau đó lấy pt đó chia cho mỗi phương trình trên cứ làm vậy là ra!!

7 tháng 1 2019

Bạn có thể tham khảo cách của mình nha:

      \(x+y+xy=19\Rightarrow\left(x+1\right)+y\left(x+1\right)=20\Rightarrow\left(x+1\right)\left(y+1\right)=20\)    (1)

      \(y+z+yz=11\Rightarrow\left(y+1\right)+z\left(y+1\right)=12\Rightarrow\left(y+1\right)\left(z+1\right)=12\)     (2)

      \(z+x+zx=14\Rightarrow\left(z+1\right)+x\left(z+1\right)=15\Rightarrow\left(z+1\right)\left(x+1\right)=15\)     (3)

         Nhân từng của (1),(2),(3), ta được:

                        \(\left[\left(x+1\right)\left(y+1\right)\left(x+1\right)\right]^2=20.12.15=3600\)

                       \(\Rightarrow\left(x+1\right)\left(y+1\right)\left(z+1\right)=\)60 hoặc -60

       +)Nếu \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=60\)

        Từ (1)\(\Rightarrow z+1=60:20=3\Rightarrow z=2\)

        Từ (2)\(\Rightarrow x+1=60:12=5\Rightarrow x=4\)

        Từ (3)\(\Rightarrow y+1=60:15=4\Rightarrow y=3\)

       +)Nếu \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=-60\)

        Từ (1)\(\Rightarrow z+1=-60:20=-3\Rightarrow z=-4\)

        Từ (2)\(\Rightarrow x+1=-60:12=-5\Rightarrow x=-6\)

        Từ (3)\(\Rightarrow y+1=-60:15=-4\Rightarrow y=-5\)

                               Vậy x=4,y=3,z=2 hoặc x=-6,y=-5,z=-4