giải pt
5/x + 2/(x+3) = 4/(x+1) + 3/(x+2)
giúp mk vs nha mk đag cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{4x^2+4x+1}=6\)
\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)
\(\Leftrightarrow\left(2x+1\right)^2=6^2\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
b) \(\sqrt{4x^2-4\sqrt{7}x+7}=\sqrt{7}\)
\(\Leftrightarrow\sqrt{\left(2x-\sqrt{7}\right)^2}=\sqrt{7}\)
\(\Leftrightarrow\left(2x-\sqrt{7}\right)^2=\left(\sqrt{7}\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\sqrt{7}=\sqrt{7}\\2x-\sqrt{7}=-\sqrt[]{7}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\\x=0\end{matrix}\right.\)
a) \(\sqrt{4x^2+4x+1}=6\)
\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)
\(\Leftrightarrow\left|2x+1\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
b) \(pt\Leftrightarrow\sqrt{\left(2x-\sqrt{7}\right)^2}=\sqrt{7}\)
\(\Leftrightarrow\left|2x-\sqrt{7}\right|=\sqrt{7}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\sqrt{7}=\sqrt{7}\\2x-\sqrt{7}=-\sqrt{7}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\\x=0\end{matrix}\right.\)
\(\frac{x+1}{x-2}=\frac{x-2}{x-4}\)
\(\Rightarrow\left(x+1\right)\left(x-4\right)=\left(x-2\right)\left(x-2\right)\)
\(\Rightarrow x^2-4x+x-4=x^2-2x-2x+4\)
\(\Rightarrow x^2-3x-4=x^2-4x+4\)
\(\Rightarrow-3x+4x=4+4\)
\(\Rightarrow x=8\)
1)\(\left(2^5:2^3\right).2^x=64\)
\(\Rightarrow2^{5-3+x}=2^6\)
\(\Rightarrow2^{2+x}=2^6\)
\(\Rightarrow.2^22^x=2^6\)
\(\Rightarrow2^x=2^6:2^2\)
\(\Rightarrow2^x=2^4\Rightarrow x=4\)
2)Tính:
\(F=3^0+3^1+...+3^9\)
\(\Rightarrow3F=3\left(3^0+3^1+...+3^9\right)=3+3^2+3^3+...+3^{10}\)
\(3F-F=3+3^2+...+3^{10}-3^0-3^1-...-3^9\)
\(2F=3^{10}-3^0=3^{10}-1\)
\(F=\frac{3^{10}-1}{2}\)
2
ta có : F = 1 + 3 + 32 + ..... + 39
=> 3F = 3 + 32 + 33 +..... + 310
=> 3F - F = 310 - 1
=> 2F = 310 - 1
=> F = \(\frac{3^{10}-1}{2}\)
Điều kiện x khác 0
\(\left(5x^4-3x^3\right):2x^3=\frac{1}{2}\)
\(\Rightarrow\frac{5}{2}x-\frac{3}{2}=\frac{1}{2}\)
\(\Rightarrow\frac{5}{2}x=2\Rightarrow x=\frac{4}{5}\)
\(x+2+x+4+...+x+52=780\)
\(2+4+6+...+52\)
Số số hạng
\(\left(52-2\right):2+1=26\)
Tổng
\(\left(52+2\right)\cdot26:2=702\)
\(26x+702=780\)
\(26x=780-702\)
\(26x=78\)
\(x=3\)
a/ ĐKXĐ: 2x - 1 >= 0 <=> 2x > 1 <=> x>= 1/2
\(\sqrt{2x-1}=\sqrt{5}\Leftrightarrow2x-1=5\Leftrightarrow2x=6\Leftrightarrow x=3\left(tm\right)\)
b/ ĐKXĐ: x - 10 >= 0 <=> x >= 10
Biểu thức trong căn luôn nhận giá trị dương => vô nghiệm
c/ ĐKXĐ: x - 5 >=0 <=> x >= 5
\(\sqrt{x-5}=3\Leftrightarrow x-5=9\Leftrightarrow x=14\left(tm\right)\)
a) \(\sqrt{2x-1}=\sqrt{5}\) (ĐK: \(x\ge\dfrac{1}{2}\))
\(\Leftrightarrow2x-1=5\)
\(\Leftrightarrow2x=6\)
\(\Leftrightarrow x=3\left(tm\right)\)
b) \(\sqrt{x-10}=-2\)
⇒ Giá trị của biểu thức trong căn luôn dương nên phương trình vô nghiệm
c) \(\sqrt{\left(x-5\right)^2}=3\)
\(\Leftrightarrow\left|x-5\right|=3\)
TH1: \(\left|x-5\right|=x-5\) với \(x-5\ge0\Leftrightarrow x\ge5\)
Pt trở thành:
\(x-5=3\) (ĐK: \(x\ge5\))
\(\Leftrightarrow x=3+5\)
\(\Leftrightarrow x=8\left(tm\right)\)
TH2: \(\left|x-5\right|=-\left(x-5\right)\) với \(x-5< 0\Leftrightarrow x< 0\)
Pt trở thành:
\(-\left(x-5\right)=3\) (ĐK: \(x< 5\))
\(\Leftrightarrow-x+5=3\)
\(\Leftrightarrow-x=-2\)
\(\Leftrightarrow x=2\left(tm\right)\)
Vậy: \(S=\left\{2;8\right\}\)