K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A= { ( 335-2) :3 + 1 } x (335+2):2
C= { ( 999-199) :100+1} x(999+199):2

tự tính

14 tháng 2 2016

Số số hạng: (899 - 99) : 100 + 1 = 9 (số)

Tổng: (899 + 99) . 9 : 2 = 4491

14 tháng 2 2016

Công tử họ Nguyễn Cách giải á bạn?

31 tháng 3 2019

Đặt\(A=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{300}\)

\(\frac{1}{101}>\frac{1}{102}>\frac{1}{103}>...>\frac{1}{300}\)

\(\Rightarrow\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)+\left(\frac{1}{201}+\frac{1}{202}+...+\frac{1}{300}\right)\)\(>\left(\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}\right)+\left(\frac{1}{300}+\frac{1}{300}+...+\frac{1}{300}\right)\)(mỗi cái trong ngoặc là một trăm phân số)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+...+\frac{1}{300}>\left(\frac{1}{200}\right).100+\left(\frac{1}{300}\right).100\)

\(\Rightarrow A>\frac{1}{2}+\frac{1}{3}\)

\(\Rightarrow A>\frac{5}{6}\)

Mà 5/6>2/3=>A>2/3

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{300}\)

Đặt A = \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{300}\)

Vì \(\frac{1}{101}>\frac{1}{102}>\frac{1}{103}>...>\frac{1}{300}\)

\(\Rightarrow\left(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+....\frac{1}{200}\right)+\left(\frac{1}{201}+\frac{1}{202}+\frac{1}{103}+.....\frac{1}{300}\right)>\left(\frac{1}{200}+\frac{1}{200}+\frac{1}{200}\right)\)

Tự làm tiếp nhé !!!

 
26 tháng 8 2021

62 . 58 = (60 + 2)(60 - 2) = 60\(^2\) - 2\(^2\) = 3600 - 4 = 3596

199\(^2\) = (200 -1)\(^2\) = 200\(^2\) - 2.200.1 + 1\(^2\) = 40 000 - 400 + 1 = 39601

499\(^2\) = (500 - 1)\(^2\) = 500\(^2\) - 2.500.1 + 1\(^2\) = 250 000 - 1000 + 1 = 249 001

299 . 301 = (300 - 1)(300 + 1) = 300\(^2\) - 1\(^2\) = 90 000 - 1 = 89 999

Học tốt

Đúng thì k cho mk nhé

26 tháng 8 2021

Trả lời:

+, \(62.58=\left(60+2\right)\left(60-2\right)=60^2-2^2=3600-4=3596\)

+, \(199^2=\left(200-1\right)^2=200^2-2.200.1+1^2=40000-400+1=39601\)

+, \(499^2=\left(500-1\right)^2=500^2-2.500.1+1^2=250000-1000+1=249001\)

+, \(299.301=\left(300-1\right)\left(300+1\right)=300^2-1=90000-1=89999\)

tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính...
Đọc tiếp

tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900

10

bn ơi mik hỏng mắt sau khó đọc bài của bn òi

29 tháng 5 2021

bạn chép phạt à

2 tháng 4 2016

Cách tính nhanh là:

99 + 199 + 299 + 399 + . . . . + 899

= ﴾100 ‐ 1﴿ + ﴾200 ‐ 1﴿ + ﴾400 ‐ 1﴿ + . . . + ﴾900 ‐ 1﴿

= ﴾100 + 200 + 300 + 400 + . . . + 900﴿ ‐ ﴾1 x 9﴿

= 4500 ‐ 9

= 4491

2 tháng 4 2016

Cách tính nhanh là: 

99 + 199 + 299 + 399 + . . . . + 899

= (100 - 1) + (200 - 1) + (400 - 1) + . . . + (900 - 1)

= (100 + 200 + 300 + 400 + . . . + 900) - (1 x 9)

= 4500 - 9

= 4491

Bài 2: 

b) Gọi \(d\inƯC\left(21n+4;14n+3\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}21n+4⋮d\\14n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}42n+8⋮d\\42n+9⋮d\end{matrix}\right.\)

\(\Leftrightarrow1⋮d\)

\(\Leftrightarrow d\inƯ\left(1\right)\)

\(\Leftrightarrow d\in\left\{1;-1\right\}\)

\(\LeftrightarrowƯCLN\left(21n+4;14n+3\right)=1\)

hay \(\dfrac{21n+4}{14n+3}\) là phân số tối giản(đpcm)

Bài 1: 

a) Ta có: \(A=1+2-3-4+5+6-7-8+...-299-300+301+302\)

\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(297+298-299-300\right)+301+302\)

\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)+603\)

\(=75\cdot\left(-4\right)+603\)

\(=603-300=303\)

Bài 2: 

a) Vì tổng của hai số là 601 nên trong đó sẽ có 1 số chẵn, 1 số lẻ

mà số nguyên tố chẵn duy nhất là 2

nên số lẻ còn lại là 599(thỏa ĐK)

Vậy: Hai số nguyên tố cần tìm là 2 và 599

4 tháng 4 2021

b,Gọi ƯCLN(21n+4,14n+3)=d

21n+4⋮d ⇒42n+8⋮d

14n+3⋮d ⇒42n+9⋮d

(42n+9)-(42n+8)⋮d

1⋮d ⇒ƯCLN(21n+4,14n+3)=1

Vậy phân số 21n+4/14n+3 là phân số tối giản

 

29 tháng 3 2017

\(A=\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot...\cdot\dfrac{899}{900}\)

\(A=\dfrac{1\cdot3}{2\cdot2}\cdot\dfrac{2\cdot4}{3\cdot3}\cdot\dfrac{3\cdot5}{4\cdot4}\cdot...\cdot\dfrac{29\cdot31}{30\cdot30}\)

\(A=\dfrac{1\cdot\left(2\cdot3\cdot4\cdot5\cdot...\cdot29\right)^2\cdot30\cdot31}{\left(2\cdot3\cdot4\cdot...\cdot30\right)^2}\)

\(A=\dfrac{1\cdot\left(2\cdot3\cdot4\cdot5\cdot...\cdot29\right)^2\cdot30\cdot31}{\left(2\cdot3\cdot4\cdot5\cdot...\cdot29\right)^2\cdot30\cdot30}\)

\(A=\dfrac{1\cdot31}{30}=\dfrac{31}{30}\)

29 tháng 3 2017

Ta có : \(\dfrac{1}{101}>\dfrac{1}{300}\)

...

\(\dfrac{1}{299}>\dfrac{1}{300}\)

Do đó :

\(\dfrac{1}{101}+\dfrac{1}{102}+..+\dfrac{1}{300}>\dfrac{1}{300}+\dfrac{1}{300}..+\dfrac{1}{300}\)

\(\Rightarrow\dfrac{1}{101}+\dfrac{1}{102}+..+\dfrac{1}{300}>\dfrac{200}{300}=\dfrac{2}{3}\)

Vậy...