Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì các số nguyên trong khoảng từ 20 000 đến 29 999 nên ta gọi các số đó có dạng 2abcd
+) Nếu 1 trong 4 chữ số a; b; c;d giống chữ số 2 thì ta có các trường hợp sau:
TH1: b = 2 => 2abcd = 2a2cd :
Có 9 cách chọn chữ số a (trừ đi chữ số 2); có 8 cách chữ số c (trừ đi chữ số 2 và a); có 7 cách chọn chữ số d
=> có 9.8 .7 = 504 số có dạng 2a2cd
TH2: c = 2 => 2abcd = 2ab2d : tương tự như TH1 ta có 504 số
TH3: d = 2 => 2abcd = 2abc2 : ta có 504 số
+) Nếu a; b; c; d đều khác chữ số 2: Vì có 2 chữ số giống nhau và không đứng cạnh nhau nên ta có các trường hợp sau:
TH1: a = c => 2abcd = 2abad :
Có 9 cách chọn chữ số a (trừ đi chữ số 2); 8 cách chọn chữ số b; 7 cách chọn chữ số d
=> có 9.8.7 = 504 số
TH2: a = d => 2abcd = 2abca: tương tự trên ta có 504 số
TH3: b = d => 2abcd = 2abcb: ta cũng có 504 số
Từ các trường hợp trên ta có tất cả là: 504 x 6 = 3024 số thỏa mãn
Gọi các số thỏa mãn đề là \(\overline{abcdef}\) (đôi một khác nhau)
- Số 7 có thể ở cả 6 vị trí.
+ Nếu a=7 => Số cách chọn các số còn lại: 9.8.7.6.5=15120 (cách)
+ Nếu a\(\ne\) 7 => Số cách chọn các số còn lại: 8.9.8.7.6.5=120960(cách)
=> Số số tự nhiên thỏa mãn: 15120+120960=136080(số)
Gọi chữ số cần lập là \(\overline{abcdef}\)
TH1: có mặt chữ số 0
Chọn 4 chữ số còn lại (ngoài 2 số 0 và 7): \(C_6^4=15\) cách
Hoán vị 6 chữ số: \(6!-5!=600\) cách
\(\Rightarrow15.600=9000\) số
TH2: không có mặt chữ số 0
Chọn 5 chữ số còn lại: \(C_6^5=6\) cách
Hoán vị 6 chữ số: \(6!=720\) cách
\(\Rightarrow6.720=4320\) số
Vậy có: \(9000+4320=13320\) số thỏa mãn
1a) gọi số cần lập là abcde
(a khác 0...)
chọn a thuộc tập số trên\{0} => có 4 cách chọn
chọn b có 5 c
chọn c có 5c
chọn d có 5c
chọn e có 5c
ADQT nhân có 4x5x5x5x5 = ....
vậy có....
b)chọn a khác 0 có 4 c
chọn b khác a có 4c
chọn c khác a và b có 3 c
chọn d khác a, b, c, có 2c
=> ADQT nhân có 4x4x3x2 =...
vậy...
c) chọn a khác o có 4 c
chọn các c/số còn lại là 1 chỉnh hợp chập 2 của 4 phần tử(trừ a) => có 4A2 cách
ADQT nhân có 4x 4A2 =...
Vậy...
d) tương tự câu a
ta có : vì chữ số 4 có mặc 3 lần nên \(\Rightarrow\) bài toán tương đương với việc tìm số lượng của số có 7 chữ số được tạo bởi các con số : \(0,1,2,3,4,4,4\)
bước 1: tìm số lượng tất cả các số được tạo bởi bao gồm trường hợp chữ số 0 ở đầu .
ta có : số cách sắp xếp vị trí cho 3 chữ số 4 là : \(C^3_7=35\)
số cách sắp xếp vị trí cho 4 chữa số \(0,1,2,3\) là : \(P^4_4=4!=24\)
\(\Rightarrow\) có \(35.24=840\) (số)
bước 2: tìm số lượng số có chữ số 0 ở đầu
ta có : số cách sắp xếp vị trí cho 3 chữ số 4 ở 6 vị trí còn lại là : \(C^3_6=20\)
số cách sắp xếp vị trí cho 3 chữa số \(1,2,3\) ở 3 vị trí còn lại là : \(P^3_3=3!=6\)
\(\Rightarrow\) có : \(20.6=120\) (số)
\(===\Rightarrow\) số lượng số cần tìm bằng : \(840-120=720\) (số)
a: Gọi số cần tìm là \(\overline{abcde}\)
a có 4 cách chọn
b có 4 cách chọn
c có 3 cách chọn
d có 2 cách chọn
e có 1 cách chọn
=>Có \(4\cdot4\cdot3\cdot2\cdot1=16\cdot6=96\left(số\right)\)
b: Gọi số cần tìm là \(\overline{abcd}\)
a có 4 cách chọn
b có 4 cách chọn
c có 3 cách chọn
d có 2 cách chọn
Do đó: Có \(4\cdot4\cdot3\cdot2=96\left(số\right)\)
c: Gọi số cần tìm có dạng là \(\overline{abc}\)
a có 4 cách chọn
b có 4 cách chọn
c có 3 cách chọn
=>Có 4*4*3=48 số
d: Gọi số cần tìm có dạng là \(\overline{abc}\)
a có 4 cách
b có 5 cách
c có 5 cách
Do đó: Có \(4\cdot5\cdot5=100\left(số\right)\)
a) Để lập được số tự nhiên có 5 chữ số gồm cả 5 chữ số 0, 1, 2, 3, 4, ta có 5 cách chọn chữ số đầu tiên (0, 1, 2, 3, 4), 5 cách chọn chữ số thứ hai, 5 cách chọn chữ số thứ ba, 5 cách chọn chữ số thứ tư và 5 cách chọn chữ số thứ năm. Vậy tổng số số tự nhiên có 5 chữ số gồm cả 5 chữ số 0, 1, 2, 3, 4 là 5 x 5 x 5 x 5 x 5 = 3125.
b) Để lập được số tự nhiên có 4 chữ số khác nhau từ các chữ số 0, 1, 2, 3, 4, ta có 5 cách chọn chữ số đầu tiên, 4 cách chọn chữ số thứ hai (loại bỏ chữ số đã chọn ở bước trước), 3 cách chọn chữ số thứ ba (loại bỏ 2 chữ số đã chọn ở bước trước), và 2 cách chọn chữ số thứ tư (loại bỏ 3 chữ số đã chọn ở bước trước). Vậy tổng số số tự nhiên có 4 chữ số khác nhau là 5 x 4 x 3 x 2 = 120.
c) Để lập được số tự nhiên có 3 chữ số khác nhau từ các chữ số 0, 1, 2, 3, 4, ta có 5 cách chọn chữ số đầu tiên, 4 cách chọn chữ số thứ hai (loại bỏ chữ số đã chọn ở bước trước), và 3 cách chọn chữ số thứ ba (loại bỏ 2 chữ số đã chọn ở bước trước). Vậy tổng số số tự nhiên có 3 chữ số khác nhau là 5 x 4 x 3 = 60.
d) Để lập được số tự nhiên có 3 chữ số từ các chữ số 0, 1, 2, 3, 4 (có thể có chữ số giống nhau), ta có 5 cách chọn chữ số đầu tiên, 5 cách chọn chữ số thứ hai, và 5 cách chọn chữ số thứ ba. Vậy tổng số số tự nhiên có 3 chữ số (có thể có chữ số giống nhau) là 5 x 5 x 5 = 125....
Ta có 1+2+3+4+5+6+ =21 Vậy tổng của 3 chữ số đầu là 10
Dễ thấy 1+3+6 = 1+4+5 = 2+3+5
Vậy có 3 cách chọn 3 nhóm 3 chữ số đầu (1,3,6 hoặc 1,4,5 hoặc 2,3,5)
Với 1 cách chọn nhóm 3 chữ số thì có 3! cách để lập ra số \(\overline{a_1a_2a_3}\)
Với 3 số còn lại thì có 3! cách để lập ra số \(\overline{a_4a_5a_6}\)
(ở đây \(\overline{a_1a_2a_3a_4a_5a_6}\) là số thỏa mãn yêu cầu đề ra)
Theo quy tắc nhân ta có 3.6.6 = 108
Vậy có 108 số cần tìm
Em thấy như này còn thiều trường hợp hay sao ý ạ tại ba số nhỏ hơn đâu nhất thiết phải bằng 10 ạ 123 vs 345 vẫn tỏa mãn đấy chứ ạ.Có thể cho em là mình sai ở đâu hay kế quả thế nào được không ạ??