1/ Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O;R) H là giao điểm 2 đường cao BD,CE của tam giác ABC
a) Chứng minh tứ giác BCDE nội tiếp. Xác định tâm đường tròn
b) F là giao điểm AH,BC. Vẽ đường kính AK của đường tròn (O). Chứng minh góc AFB=góc ACK
c) Chứng minh tứ giác BHCK là hình bình hành và H,I,K thẳng hàng
a)Gọi I là trung điểm của tam giác BC
Áp dụng đường trung tuyến cạnh huyền của tam giác EBC và DBC
=>IE=ID=IB=IC
=> tứ giác BCDE nội tiếp. tâm đường tròn là I
b)AFK=90 ( dg cao thứ 3)
ACK=90 (chắn nữa dg tròn)
=>AFB=ACK
c)BD vg góc với AC
ACK=90 =>CK vg góc với AC
=>CK song song với BH
tuong tu CH song song voi BK
=>BHCK là hinh binh hanh
*vì I là trung điểm của BC
=>I cung la trung diem cua HK
=>H,I,K thang hang