K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2021

Gọi điểm cố định mà (d) luôn đi qua là \(A\left(x_0;y_0\right)\)

\(\Leftrightarrow\left(m+2\right)x_0+\left(m-3\right)y_0-m+8=0\\ \Leftrightarrow mx_0+2x_0+my_0-3y_0-m+8=0\\ \Leftrightarrow m\left(x_0+y_0-1\right)+\left(2x_0-3y_0+8\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0+y_0=1\\2x_0-3y_0=-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=2\end{matrix}\right.\Leftrightarrow A\left(-1;2\right)\)

Vậy (d) luôn đi qua \(A\left(-1;2\right)\left(đpcm\right)\)

16 tháng 7 2021

a) (d) đi qua điểm \(M\left(-3;1\right)\Rightarrow1=\left(2m-1\right).\left(-3\right)-4m+5\)

\(\Rightarrow1=-6m+3-4m+5\Rightarrow1=-10m+8\Rightarrow10m=7\Rightarrow m=\dfrac{7}{10}\)

\(\Rightarrow y=\dfrac{2}{5}x+\dfrac{11}{5}\)

b) Gọi \(A\left(x_A;y_A\right)\) là điểm cố định mà (d) luôn đi qua

\(\Rightarrow y_A=\left(2m-1\right)x_A-4m+5\)

\(\Rightarrow2mx_A-x_A-4m+5-y_A=0\Rightarrow2m\left(x_A-2\right)-\left(x_A+y_A-5\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x_A=2\\x_A+y_A-5=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x_A=2\\y_A=3\end{matrix}\right.\Rightarrow A\left(2;3\right)\)

\(\Rightarrow\) (d) luôn đi qua điểm \(A\left(2;3\right)\) cố định

a) Thay x=-3 và y=1 vào (d), ta được:

\(\left(2m-1\right)\cdot\left(-3\right)-4m+5=1\)

\(\Leftrightarrow-6m+3-4m+5=1\)

\(\Leftrightarrow-10m=-7\)

hay \(m=\dfrac{7}{10}\)

NV
8 tháng 7 2021

a.

Để d đi qua M \(\Rightarrow\) tọa độ M thỏa mãn pt d

\(\Rightarrow1=-3\left(2m-1\right)-4m+5\)

\(\Rightarrow m=\dfrac{7}{10}\)

b.

Giả sử tọa độ điểm cố định là \(A\left(x_0;y_0\right)\Rightarrow\) với mọi m ta luôn có:

\(y_0=\left(2m-1\right)x_0-4m+5\)

\(\Leftrightarrow2m\left(x_0-2\right)-\left(x_0+y_0-5\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0-2=0\\x_0+y_0-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0=2\\y_0=3\end{matrix}\right.\)

Vậy với mọi m thì d luôn đi qua điểm cố định có tọa độ \(\left(2;3\right)\)

23 tháng 9 2021

\(a,d//d_1\Leftrightarrow\left\{{}\begin{matrix}m+2=-2\\m\ne3\end{matrix}\right.\Leftrightarrow m=-4\\ b,d\perp d_2\Leftrightarrow\dfrac{1}{3}\left(m+2\right)=-1\Leftrightarrow m+2=-3\Leftrightarrow m=-5\\ c,d.qua.N\left(1;3\right)\Leftrightarrow x=1;y=3\Leftrightarrow3=m+2+m\\ \Leftrightarrow2m=1\Leftrightarrow m=\dfrac{1}{2}\)

23 tháng 9 2021

k có câu d ạ

 

11 tháng 11 2016

a/ Gọi điểm cố định \(M\left(x_0;y_0\right)\)

Khi đó đường thẳng y = k(x+3)-7 đi qua M , tức \(k\left(x_0+3\right)-7-y_0=0\) 

Vì đường thẳng y = k(x+3)-7 luôn đi qua M nên \(\hept{\begin{cases}x_0+3=0\\-y_0-7=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x_0=-3\\y_0=-7\end{cases}}\)

Vậy đường thẳng đã cho luôn đi qua điểm M(-3;-7)

b/ Gọi điểm cố định là \(N\left(x_0;y_0\right)\)

Vì họ đường thẳng (m+2)x + (m-3)y -m+8 = 0 luôn đi qua N nên : 

\(\left(m+2\right).x_0+\left(m-3\right).y_0-m+8=0\)

\(\Leftrightarrow m\left(x_0+y_0-1\right)+\left(2x_0-3y_0+8\right)=0\)

Ta có \(\hept{\begin{cases}x_0+y_0-1=0\\2x_0-3y_0+8=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x_0=-1\\y_0=2\end{cases}}\)

Vậy điểm cố định N(-1;2)

Câu còn lại bạn làm tương tự nhé ^^

12 tháng 11 2016

c/ Đơn giản thôi mà =)

Ta cũng gọi điểm cố định đó là \(M\left(x_0;y_0\right)\)

Vì họ đường thẳng y=(2-k)x+k-5 đi qua M nên : 

\(y_0=\left(2-k\right)x_0+k-5\Leftrightarrow k\left(1-x_0\right)+\left(2x_0-y_0-5\right)=0\)

Ta có \(\hept{\begin{cases}1-x_0=0\\2x_0-y_0-5=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x_0=1\\y_0=-3\end{cases}}\)

Vậy điểm cố định là M(1;-3)

17 tháng 4 2022

a) Để (d) đi qua điểm A(1;3) thì \(3=2m.1+5\Rightarrow2m=-2\Rightarrow m=-1\)

b) Xét phương trình hoành độ giao điểm: \(x^2=2mx+5\)

\(\Rightarrow x^2-2mx-5=0\left(I\right)\)

Ta có \(\Delta'=m^2+5>0,\forall m\) nên PT (I) luôn có 2 nghiệm phân biệt \(x_1,x_2\) với mọi \(m\)

Vậy (d) luôn cắt (P) tại hai điểm phân biệt.

c) Áp dụng hệ thức Vi-et ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-5\end{matrix}\right.\)

Để \(x_1^2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)

\(\Leftrightarrow4m^2-2.\left(-5\right)=4\Leftrightarrow4m^2=-6\) (Vô lý)

Vậy không có m thỏa mãn ycbt.

7 tháng 11 2017

Bài 3 làm sao v ạ?

7 tháng 12 2021

Mất đường (d2) rồi bạn!