cho n thuộc N:
CMR PHÂN SỐ 2n+3/4n+2 là phân số tối giản
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{2n+3}{4n+1}\) là phân số tối giản
\(\frac{2n+3}{4n+1}\)= \(\frac{2+3}{4+1}\) =\(\frac{5}{5}\)=1
=>n=1
mình ko chắc là đúng nha
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
Gọi ƯCLN(2n+1005;4n+2011)=d(\(d\in\)N*)
\(\Rightarrow2n+1005⋮d\Rightarrow4n+2010⋮d\Rightarrow4n+2011-4n-2010⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)
Vậy ta có đpcm
gọi d là ƯC(2n+1005,4n+2011)(d\(\in\)N*)
theo bài ra ta có
2n+1005\(⋮\)d\(\Rightarrow\)2(2n+1005)\(⋮\)d\(\Rightarrow\)4n+2010\(⋮\)d
4n+2011\(⋮\)d
\(\Rightarrow\)(4n+2011)-(4n+2010)\(⋮\)d
\(\Rightarrow\)4n+2011-4n+2010\(⋮\)d
\(\Rightarrow\)1\(⋮\)d
\(\Rightarrow\)d=1
vậy với mọi n \(\in\)N thì \(\dfrac{2n+1005}{4n+2011}\) là phân số tối giản
Gọi d là ƯCLN (2n+3; 4n+7) (d thuộc N)
=> \(\hept{\begin{cases}2n+3⋮d\\4n+7⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+7⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+7⋮d\end{cases}}}\)
=> (4n+7)-(4n+6) chia hết cho d
=> 4n+7-4n-6 chia hết cho d
=> 1 chia hết cho d. Mà d thuộc N
=> d=1 => ƯCLN (2n+3; 4n+7)=1
=> \(\frac{2n+3}{4n+7}\)tối giản với n thuộc Z
Gọi d là ƯC(2n + 3 ; 4n + 7)
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+7⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4\left(2n+3\right)⋮d\\2\left(4n+7\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}8n+12⋮d\\8n+14⋮d\end{cases}}}\)
=> ( 8n + 12 ) - ( 8n + 14 ) chia hết cho d
=> 2 chia hết cho d
* d = 1 => 2n + 3 chia hết cho 1
* d = 2 => 2n + 3 không chia hết cho 2 vì 3 không chia hết cho 2
=> d = 1
=> ƯCLN(2n + 3; 4n + 7) = 1
=> \(\frac{2n+3}{4n+7}\)tối giản ( đpcm )
a) Đặt \(d=\left(n+1,2n+3\right)\).
Suy ra \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}}\Rightarrow\left(2n+3\right)-\left(2n+2\right)=1⋮d\)
Suy ra \(d=1\).
Do đó ta có đpcm.
b) Bạn làm tương tự ý a).
c) Đặt \(d=\left(3n+2,5n+3\right)\).
Ta có: \(\hept{\begin{cases}3n+2⋮d\\5n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5\left(3n+2\right)⋮d\\3\left(5n+3\right)⋮d\end{cases}}\Rightarrow5\left(3n+2\right)-3\left(5n+3\right)=1⋮d\).
Suy ra \(d=1\).
Gọi ƯC nguyên tố của 4n+3 và 2n-1 là d. Ta có:
4n+3 chia hết cho d => 4n-2+5 chia hết cho d
2n-1 chia hết cho d => 4n-2 chia hết cho d
=> 4n-2+5-(4n-2) chia hết cho d
=> 5 chia hết cho d
Giả sử phân số rút gọn được
=> 2n-1 chia hết cho 5
=> 2n-1+5 chia hết cho 5
=> 2n+4 chia hết cho 5
=> 2(n+2) chia hết cho 5
=> n+2 chia hết cho 5
=> n = 5k-2
=> Vậy để phân số tối giản thì n\(\ne\)5k-2
Gọi ƯC( 2n + 3 ; 4n + 2 ) = d
=> 2n + 3 ⋮ d và 4n + 2 ⋮ d
=> 4n + 6 ⋮ d và 4n + 2 ⋮ d
=> 4n + 6 - ( 4n + 2 ) ⋮ d
=> 4n + 6 - 4n - 2 ⋮ d
=> 4 ⋮ d
=> d ∈ { 1 ; 2 ; 4 }
d = 1 ( nhận )
d = 2 ( loại ) do 2n + 3 ⋮/ 2
d = 4 loại do 2n + 3 ⋮/ 4
=> d = 1
=> ƯCLN( 2n + 3 ; 4n + 2 ) = 1
hay \(\frac{2n+3}{4n+2}\)là phân số tối giản ( dpcm )
Ta có
\(2n+3\text{ là số lẻ với mọi n}\)
\(4n+2\text{ là số chẵn với mọi n}\) do đó \(\left(2n+3,4n+2\right)=1\text{ hay phân số đã cho là phân số tối giản}\)