K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2018

\(A=\frac{n^2-1}{n^2+1}=\frac{n^2+1-2}{n^2+1}=1-\frac{2}{n^2+1}\)

\(B=\frac{n^2+3}{n^2+4}=\frac{n^2+4-1}{n^2+4}=1-\frac{1}{n^2+4}\)

Có \(\frac{2}{n^2+1}>\frac{1}{n^2+4}\)

\(\Rightarrow B>A\)

27 tháng 7 2018

Ta có: 

A = \(\frac{n^2-1}{n^2+1}=1+\frac{-2}{n^2+1}\)

B = \(\frac{n^2+3}{n^2+4}=1+\frac{-1}{n^2+4}\)

Ta thấy : 1 = 1

=> So sánh \(\frac{-2}{n^2+1}\)và \(\frac{-1}{n^2+4}\)

\(\frac{-2}{n^2+1}=\frac{-2\left(n^2+4\right)}{\left(n^2+1\right)\left(n^2+4\right)}\)

\(\frac{-1}{n^2+4}=\frac{-1\left(n^2+1\right)}{\left(n^2+4\right)\left(n^2+1\right)}\)

Ta thấy \(-2\left(n^2+4\right)< -1\left(n^2+1\right)\)

=> \(\frac{-2\left(n^2+4\right)}{\left(n^2+1\right)\left(n^2+4\right)}\) <  \(\frac{-1\left(n^2+1\right)}{\left(n^2+4\right)\left(n^2+1\right)}\)

Vậy A < B

Cách 1 :

Ta có : \(\frac{n}{n+1}>\frac{n}{2n+3}\left(1\right)\)

          \(\frac{n+1}{n+2}>\frac{n+1}{2n+3}\left(2\right)\)

Cộng theo từng vế ( 1) và ( 2 ) ta được :

\(A=\frac{n}{n+1}+\frac{n+1}{n+2}>\frac{2n+1}{2n+3}=B\)

VẬY \(A>B\)

CÁCH 2

\(A=\frac{n}{n+1}+\frac{n+1}{n+2}>\frac{n}{n+2}+\frac{n+1}{n+2}\)

   \(=\frac{2n+1}{n+2}>\frac{2n+1}{2n+3}\)

VẬY A>B  

Chúc bạn học tốt ( -_- )

1 tháng 5 2018

Ta có :   \(\left(-n-2\right).\left(-n-2\right)\)

\(=\left(-n-2\right).-n-\left(-n-2\right).2\)

\(=\left(-n\right).\left(-n\right)-2.\left(-n\right)-\left[-n.2-2.2\right]\)

\(=n^2+2n+2n+4\)

\(=n^2+4n+4\)( 1 ) 

\(\left(n+1\right)\left(n+3\right)\)

\(=\left(n+1\right).n+\left(n+1\right).3\)

\(=n^2+n+3n+3\)( 2 ) 

Từ ( 1 ) ; ( 2 ) 

\(\Rightarrow\left(-n-2\right)\left(-n-2\right)>\left(n+1\right)\left(n+3\right)\)

\(\Rightarrow\frac{n+1}{-n-2}>\frac{-n-2}{n+3}\)

Chúc bạn học tốt !!!! 

11 tháng 3 2018

nho hon 1

8 tháng 3 2018

A đâu !!

10 tháng 3 2018

anh cũng đang định hỏi câu này

30 tháng 11 2018

x khác 1

\(N=\frac{\left(x+2\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{2\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2x^2+4}{\left(x+1\right)\left(x^2+x+1\right)}\)

\(N=\frac{x^2+2x-x-2-2x^2-2x-2+2x^2+4}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{x^2-x}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\frac{x}{x^2+x+1}\)

Xét hiệu 1/3-N=\(\frac{1}{3}-\frac{x}{x^2+x+1}=\frac{x^2+x+1-3x}{3\left(x^2+x+1\right)}=\frac{x^2-2x+1}{3\left(x^2+x+1\right)}=\frac{\left(x-1\right)^2}{3\left(x^2+x+1\right)}>0\)với mọi x khác 1

=> 1/3 >N