K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2021

\(=2014\left(4+3+2+1\right)=20140\)

30 tháng 4 2016

=(1+2+3+4+5+6+7+.....+108+109)x(2014x(3-2-1))

=(1+2+3+4+5+6+7+.....+108+109)x(2014x0)

=Ax0

=0

30 tháng 4 2016

   ( 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 ) x ( 2014 x 3  - 2014 x 2 - 2014 )

= ( 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 ) x              0

=                      0

0 nhân với số nào cũng bằng 0

29 tháng 11 2016

Ta có:

\(M=\frac{x\left(yz-x^2\right)+y\left(zx-y^2\right)+z\left(xy-z^2\right)}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}=\frac{xyz-x^3+xyz-y^3+xyz-z^3}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}=\frac{3xyz-x^3-y^3-z^3}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)

\(-M=\frac{x^3+y^3+z^3-3xyz}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)

Xét đẳng thức phụ:

\(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=\left[\left(a +b\right)^3+c^3\right]-3ab\left(a+b+c\right)\)\(=\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2\right)-ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2-ab\right]=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)

\(=\frac{1}{2}\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-abc-ac\right)\)

\(=\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\)

Thay vào -M ta có:

\(-M=\frac{\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}=\frac{1}{2}\left(x+y+z\right)\Rightarrow M=-\frac{1}{2}\left(x+y+z\right)\)

Giờ thay: \(x=2014^{2015}-20142015;y=20142015-2015^{2014};z=2015^{2014}-2014^{2015}\)

Ta có:

\(M=-\frac{1}{2}\left(2014^{2015}-20142015+20142015-2015^{2014}+2015^{2014}-2014^{2015}\right)=0\)

29 tháng 11 2016

Bạn làm ngược từ cuối á .... cũng sáng tạo ý

23 tháng 1 2019

\(A=1+2+...+2^{2015}+2^{2016}\)

\(2A=2+2^2+...+2^{2016}+2^{2017}\)

\(2A-A=\left(2+2^2+...+2^{2017}\right)-\left(1+2+...+2^{2016}\right)\)

\(A=2^{2017}-1\)

23 tháng 1 2019

\(B=2^{2016}+2^{2015}+2^{2014}+...+2+1\)

\(\Rightarrow B=1+2+...+2^{2014}+2^{2015}+2^{2016}\)

\(\Rightarrow2B=2+2^2+...+2^{2015}+2^{2016}+2^{2017}\)

\(\Rightarrow2B-B=2^{2017}-1\Rightarrow B=2^{2017}-1\)

22 tháng 10 2016

a2014+b2014+c2014=1

a2015+b2015+c2015=1

=>a2014+b2014+c2014=a2015+b2015+c2015=1

=>a=b=1

=>A=3

22 tháng 10 2016

đây là hướng giải thôi nhé

\(\frac{2014.2015+2016}{2015.2016-2014}=\frac{2014.2015+2016}{2015.2014+4030-2014}=\frac{2014.2015+2016}{2014.2015+2016}=1\)