K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
14 tháng 9

Lời giải:

Xét tử số:

$\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+....+\frac{99}{1}$

$=(\frac{1}{99}+1)+(\frac{2}{98}+1)+(\frac{3}{97}+1)+....+(\frac{98}{2}+1)+1$

$=\frac{100}{99}+\frac{100}{98}+\frac{100}{97}+....+\frac{100}{2}+\frac{100}{100}$

$=100(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100})$

$\Rightarrow M=\frac{100(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100})}{\frac{1}{2}+\frac{1}{3}+....+\frac{1}{100}}=100$

22 tháng 11 2015

\(A=\frac{\frac{98}{2}+1+\frac{97}{3}+1+.....+\frac{2}{98}+1+\frac{1}{99}+1+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+......+\frac{1}{99}+\frac{1}{100}}=\frac{\frac{100}{2}+\frac{100}{3}+........+\frac{100}{98}+\frac{100}{99}+\frac{100}{100}}{\frac{1}{2}+\frac{1}{3}+......+\frac{1}{99}+\frac{1}{100}}\)

    \(=\frac{100\left(\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{100}\right)}{\left(\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{100}\right)}=100\)

3 tháng 4 2016

M=1+(1/99+1)+(2/98+1)+...+98/2+1) / 1/2+1/3+1/4+1/5+...+1/100

M=100/100+100/99+100/98+...+100/2 / 1/2+1/3+1/4+...+1/100

M=100.(1/100+1/99+1/98+...+1/2) /1/2+1/3+1/4+...+1/100

M=100

vậy M=100

nếu cảm thấy đúng thì k cho mk nha!nhớ kb lun đó !mk hết lượt rùi!

3 tháng 4 2016

M=100 đó

26 tháng 3 2015

Phân tích mẫu ta có

99/1 + 98/2 +...+1/99 = (98/2 + 1) + (97/3 + 1) +...+(1/99 + 1) +99/1 - 99

( cộng 1 vào mỗi phân số trừ 99/1   do đó phải trừ đi 99 để vẵn được đẳng thức đó)

= 100/2 +100/3 +...+100/99 = 100. (1/2 +1/3 +...+1/99)

Do đó B = [100. (1/2 +1/3 +...+1/99)]/(1/2 +1/3 +..1/99) =100

27 tháng 3 2015

Phân tích mẫu ta có

99/1 + 98/2 +...+1/99 = (98/2 + 1) + (97/3 + 1) +...+(1/99 + 1) +99/1 - 99

( cộng 1 vào mỗi phân số trừ 99/1   do đó phải trừ đi 99 để vẵn được đẳng thức đó)

= 100/2 +100/3 +...+100/99 = 100. (1/2 +1/3 +...+1/99)

Do đó B = [100. (1/2 +1/3 +...+1/99)]/(1/2 +1/3 +..1/99) =100

27 tháng 6 2018

Đặt \(A=\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{98}{2}+\frac{99}{1}\)

\(A=\left(\frac{1}{99}+1\right)+\left(\frac{2}{98}+1\right)+\left(\frac{3}{97}+1\right)+...+\left(\frac{98}{2}+1\right)+1\) ( 99/1 = 99, tất cả 98 ( không tính 99/1) hạng tử trong A đều cộng với 1 , dư ra 1 chỗ cuối)

\(A=\frac{100}{99}+\frac{100}{98}+\frac{100}{97}+...+\frac{100}{2}+\frac{100}{100}\) ( 100/100=1)

\(A=100.\left(\frac{1}{2}+...+\frac{1}{97}+\frac{1}{98}+\frac{1}{99}+\frac{1}{100}\right)\)

Thay A vào E, có:

\(E=\frac{100.\left(\frac{1}{2}+...+\frac{1}{97}+\frac{1}{98}+\frac{1}{99}+\frac{1}{100}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)

\(E=100\)

27 tháng 6 2018

\(\Rightarrow E=\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+....+\frac{98}{2}+1+1+...+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)     ( Có 99 số 1)

\(\Rightarrow\frac{\frac{1}{99}+1+\frac{2}{98}+\frac{3}{97}+1+...+\frac{98}{2}+1+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)(Nhóm 98 số 1 với 98 phân số đầu ở trên tử)mik viết thiếu nha sorry *-*

\(\Rightarrow E=\frac{\frac{100}{99}+\frac{100}{98}+\frac{100}{97}+...+\frac{100}{2}+\frac{100}{100}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)

\(\Rightarrow E=\frac{\frac{100}{2}+\frac{100}{3}+\frac{100}{4}+...+\frac{100}{99}+\frac{100}{100}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)

\(\Rightarrow E=\frac{100\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)

\(\Rightarrow E=\frac{100.1}{1}=100\)

~Chúc bạn hok tốt~