\(|x-5|+|x-3|=2\)
giả phương trình sau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}x^2+y^2=5\\x^3+2y^2=10x-10y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\sqrt{5-y^2}\\\left(\sqrt{5-y^2}\right)^3+2y^2=10\sqrt{5-y^2}-10y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\sqrt{5-y^2}\\y=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\sqrt{5-1^2}=\sqrt{4}=2\\y=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)
sai rồi bạn ạ còn một GT nữa cơ bạn thử xét x=-2 y=-1 xem
\(x\left(x+1\right)\left(x+2\right)=x^3+x^2+8\)
\(\Leftrightarrow x^2+x-4=0\)
\(\Leftrightarrow\left(x^2+\frac{2x}{2}+\frac{1}{4}\right)-4-\frac{1}{4}=0\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2-\frac{17}{4}=0\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=\frac{17}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{17}}{2}-\frac{1}{2}\\x=-\frac{\sqrt{17}}{2}-\frac{1}{2}\end{cases}}\)
Giả sử phương trình \(x^5-x^3+x-2=0\) có nghiệm thực \(x_0\). CMR :
\(\sqrt[6]{3}< x_0< \sqrt[6]{4}\)
\(a,\left(x-6\right)\left(2x-5\right)\left(3x+9\right)=0\Leftrightarrow\left[{}\begin{matrix}x-6=0\Leftrightarrow x=6\\2x-5=0\Leftrightarrow x=\dfrac{5}{2}\\3x+9=0\Leftrightarrow x=-3\end{matrix}\right.\)
\(b,2x\left(x-3\right)+5\left(x-3\right)=0\Leftrightarrow\left(2x+5\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x-3=0\Leftrightarrow x=3\\2x+5=0\Leftrightarrow x=-\dfrac{5}{2}\end{matrix}\right.\)
\(c,x^2-4-\left(x-2\right)\left(3-2x\right)=0\Leftrightarrow\left(x-2\right)\left(x+2\right)-\left(x-2\right)\left(3-2x\right)=0\Leftrightarrow\left(x-2\right)\left(x+2-3+2x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)
\(x=-7\left(2m-5\right)x-2m^2+8\Leftrightarrow x+7\left(2m-5\right)=8-2m^2\Leftrightarrow x\left(14m-34\right)=8-2m^2\)
\(ycđb\Leftrightarrow14m-34\ne0\Leftrightarrow m\ne\dfrac{34}{14}\)\(\Rightarrow x=\dfrac{8-2m^2}{14m-34}\)
\(3.17\Leftrightarrow4x^2-4x+1-2x-1=0\Leftrightarrow4x^2-6x=0\Leftrightarrow x\left(4x-6\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{2}\end{matrix}\right.\)
3.15:
a, \(\Leftrightarrow\left\{{}\begin{matrix}x-6=0\\2x-5=0\\3x+9=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\x=\dfrac{5}{2}\\x=-\dfrac{9}{3}=-3\end{matrix}\right.\)
b, \(\Leftrightarrow\left(x-3\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=-\dfrac{5}{2}\end{matrix}\right.\)
c, \(\Leftrightarrow\left(x-2\right)\left(x+2\right)-\left(x-2\right)\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2-3+2x\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)
3.16
\(\Leftrightarrow\left(2m-5\right).-7-2m^2+8=0\)
\(\Leftrightarrow-14m+35-2m^2+8=0\)
\(\Leftrightarrow-14m-2m^2+43=0\)
\(\Leftrightarrow-2\left(7m+m^2\right)=-43\)
\(\Leftrightarrow m\left(7-m\right)=\dfrac{43}{2}\)
\(\Leftrightarrow\dfrac{m\left(7-m\right)}{1}-\dfrac{43}{2}=0\)
\(\Leftrightarrow\dfrac{14m-2m^2}{2}-\dfrac{43}{2}=0\)
pt vô nghiệm
đk : x khác 0 ; -1 ; 2
\(\Leftrightarrow5+1+2=\dfrac{7x\left(x+2\right)-x\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}\)
\(\Leftrightarrow8\left(x+1\right)\left(x+2\right)=7x^2+14x-x^2-x\)
\(\Leftrightarrow8x^2+24x+16=6x^2+13x\Leftrightarrow2x^2+11x+16=0\)
\(\Leftrightarrow2\left(x^2+\dfrac{2.11}{4}x+\dfrac{121}{16}-\dfrac{121}{16}\right)+16=0\)
\(\Leftrightarrow2\left(x+\dfrac{11}{4}\right)^2+\dfrac{7}{8}=0\)( voli)
Vậy pt vô nghiệm
\(\hept{\begin{cases}\frac{3x+2}{x+3}+\frac{2y-5}{y-1}=5\left(1\right)\\\frac{3x+5}{x+3}+\frac{2y-4}{y-1}=4\left(2\right)\end{cases}}\)
\(\left(1\right)\Leftrightarrow y=-\frac{3x+2}{7}\)
Thê vào (2) rồi rut gọn ta được
\(3x+11=0\)
\(\Leftrightarrow x=-\frac{11}{3}\)
\(\Rightarrow y=\frac{9}{7}\)
Tìm 2 giá trị của x để hàm \(f\left(x\right)\) nhận kết quả trái dấu là được.
a.
Đặt \(f\left(x\right)=\left(1-m^2\right)x^3-6x-1\)
Hàm \(f\left(x\right)\) là hàm đa thức nên liên tục trên R
\(f\left(0\right)=-1< 0\) (chọn \(x=0\) do nó làm triệt tiêu tham số m, thường sẽ ưu tiên chọn những giá trị x kiểu thế này. Ở câu này, có đúng 1 giá trị x khiến m triệt tiêu nên phải chọn thêm)
\(f\left(-1\right)=m^2-1+6-1=m^2+4>0\) với mọi m (để ý rằng ta đã có \(f\left(0\right)\) âm nên cần chọn x sao cho \(f\left(x\right)\) dương, mà \(-m^2\) nên ta nên chọn x sao cho nó chuyển dấu thành \(m^2\))
\(\Rightarrow f\left(0\right).f\left(-1\right)< 0;\forall m\)
\(\Rightarrow\) Hàm luôn có ít nhất 1 nghiệm thuộc \(\left(-1;0\right)\) với mọi m
Hay với mọi m thì pt luôn luôn có nghiệm
b.
Đặt \(f\left(x\right)=\left(m^2+m+5\right)\left(3-x\right)^{2021}x+x-4\)
\(f\left(x\right)\) là hàm đa thức nên liên tục trên R
\(f\left(0\right)=-4< 0\)
(Tới đây, nếu ta chọn tiếp \(x=3\) để triệt tiêu m thì cho \(f\left(3\right)=-1\) vẫn âm, ko giải quyết được vấn đề, nên ta phải chọn 1 giá trị khác. Thường trong những trường hợp xuất hiện \(m^2\) thế này, cố gắng chọn x sao cho hệ số của \(m^2\) dương (nếu cần \(f\left(x\right)\) dương, còn cần \(f\left(x\right)\) âm thì chọn x sao cho hệ số \(m^2\) âm). Ở đây dễ nhất là chọn \(x=2\) , vì khi đó \(\left(3-2\right)^{2021}=1\) vừa đảm bảo hệ số \(m^2\) dương vừa dễ tính toán, nếu chọn \(x=1\) cũng được thôi nhưng quá to sẽ rất khó biến đổi)
\(f\left(2\right)=\left(m^2+m+5\right).\left(3-2\right)^{2021}.2+2-4=2\left(m^2+m+5\right)-2\)
\(=2m^2+2m+8=2\left(m+\dfrac{1}{2}\right)^2+\dfrac{15}{2}>0;\forall m\)
\(\Rightarrow f\left(0\right).f\left(2\right)< 0;\forall m\Rightarrow\) hàm luôn có ít nhất 1 nghiệm thuộc \(\left(0;2\right)\) với mọi m
Hay pt đã cho luôn có nghiệm với mọi m