Cho a, b, c, m ∈ Z. Chứng minh rằng nếu a ⋮ m, b ⋮ m và a + b + c ⋮ m thì c ⋮ m
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì x < y (a/m < b/m) và m > 0 nên a < b .
x = a / m = 2a / 2m ; y = b / m = 2b / 2m ; z = a + b / 2m
a < b => a + a < a + b < b + b <=> 2a < a + b < 2b => 2a / 2m < a + b / 2m < 2b / 2m => x < z < y
Có x < y => \(\frac{a}{m}\) < \(\frac{b}{m}\) => a < b (vì m > 0)
x = \(\frac{a}{m}\) = \(\frac{2a}{2m}\) - \(\frac{a+a}{2m}\) < \(\frac{a+b}{2m}\) = z
=> x < z (1)
y = \(\frac{b}{m}\) = \(\frac{2b}{2m}\) = \(\frac{b+b}{2m}\) > \(\frac{a+b}{2m}\) (b > a)
=> y > z (2)
Từ (1) và (2) suy ra x < z < y.
Theo đề bài ta có x = a/m, y = b/m (a, b, m ∈ Z, b # 0)
Vì x < y nên ta suy ra a < b
Ta có: x = 2a/2m, y = 2b/2m; z = (a+b)/2m
Vì a < b => a + a < a + b => 2a < a + b
Do 2a < a + b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z < y
ta có : x < y hay a/m < b/m => a < b.
So sánh x, y, z ta chuyển chúng cùng mẫu : 2m
x = a/m = 2a/ 2m và y = b/m = 2b/2m và z = (a + b) / 2m
mà : a < b
suy ra : a + a < b + a
hay 2a < a + b
suy ra x < z (1)
mà : a < b
suy ra : a + b < b + b
hay a + b < 2b
suy ra z < y (2)
ta có x=a/m = 2a/2m ; y= b/m= 2b/2m ; z= (a+b)/2m
lại có x<y <=> a<b (do m>0)
<=> a+a < a+b < b + b
<=> 2a < a+b < 2b
<=> 2a/2m <(a+b)/2m <2b/2m
<=> x<z<y
x =a/m =>. x = 2a/2m
y =b/m => y = 2b/2m
z = (a+b)/2m
theo giả thiết a < b => a + b < b + b => a + b < 2b ........(1)
Ngòa i ra, a < b => a + a < a + b => 2a < a + b ........(2)
Suy ra:
2a < a +b < 2b
Suy ra (chia 2 vế cho 2m) :
2a/2m < (a +b)/2m < 2b
R út gọn ta được : x < z <y
\(4,VT=-a+b+c-a+b-c+a-b-c=-a+b-c=-\left(a-b+c\right)=VP\\ 5,M=-a+b-b-c+a+c-a=-a\\ M>0\Rightarrow-a>0\Rightarrow a< 0\)
a)+)Theo bài ta có:a\(⋮\)c;b\(⋮\)c
\(\Rightarrow am⋮c;bn⋮c\)
\(\Rightarrow am\pm bn⋮c\)(ĐPCM)
Vậy nếu a\(⋮\)c;b\(⋮\)c \(\Rightarrow am\pm bn⋮c\)
b)+)Theo bài ta có:a\(⋮\)m;b\(⋮\)m;a+b+c\(⋮\)m
\(\Rightarrow\left(a+b\right)+c⋮m\)
Mà a+b\(⋮\)m(vì a\(⋮\)m;b\(⋮\)m)
\(\Rightarrow c⋮m\)(ĐPCM)
Vậy c\(⋮m\) khi a\(⋮\)m;b\(⋮\)m và a+b+c\(⋮\)m
*Lưu ý ĐPCM=Điều phải chứng minh
Chúc bn học tốt
`a vdots m,b vdots m`
`=>a+b vdots m`
Mà `a+b+c vdots m`
`=>a+b+c-(a+b) vdots m`
`=>a+b+c-a-b vdots m`
`=>(a-a)+(b-b)+c vdots m`
`=>0+0+c vdots m`
`=>c vdots m(forall a,b,c in Z)`