K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2021

bài 4
2. No, I don't.
3. No, we did't.
4. No. it don't.

2 tháng 11 2021

Bài 4:

\(a,\Rightarrow5⋮x\Rightarrow x\inƯ\left(5\right)=\left\{1;5\right\}\\ b,\Rightarrow x-2+7⋮x-2\\ \Rightarrow x-2\inƯ\left(7\right)=\left\{1;7\right\}\\ \Rightarrow x\in\left\{3;9\right\}\\ c,\Rightarrow3\left(x+1\right)+4⋮x+1\\ \Rightarrow x+1\inƯ\left(4\right)=\left\{1;2;4\right\}\\ \Rightarrow x\in\left\{0;1;3\right\}\\ d,\Rightarrow10x+6⋮2x-1\\ \Rightarrow5\left(2x-1\right)+11⋮2x-1\\ \Rightarrow2x-1\inƯ\left(11\right)=\left\{1;11\right\}\\ \Rightarrow x\in\left\{1;6\right\}\\ e,\Rightarrow x\left(x+3\right)+11⋮x+3\\ \Rightarrow x+3\inƯ\left(11\right)=\left\{1;11\right\}\\ \Rightarrow x=8\left(x\in N\right)\\ f,\Rightarrow x\left(x+3\right)+2\left(x+3\right)+5⋮x+3\\ \Rightarrow x+3\inƯ\left(5\right)=\left\{1;5\right\}\\ \Rightarrow x=2\left(x\in N\right)\)

26 tháng 10 2021

Bài 4:

\(\Leftrightarrow n+1\in\left\{1;3\right\}\)

hay \(n\in\left\{0;2\right\}\)

26 tháng 10 2021

\(\left(n+4\right)⋮\left(n+1\right)\Rightarrow\left(n+1\right)+3⋮\left(n+1\right)\)

\(\Rightarrow\left(n+1\right)\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

Mà \(n\in N\)

\(\Rightarrow n\in\left\{0;2\right\}\)

tính cột dọc kiểu j?

29 tháng 3 2022

ủa lm r mà?

29 tháng 3 2022

bài 4 :

bà có số tuổi là :

     32 + 28= 60 ( tuổi )

         Đáp số : 60 tuổi 

16 tháng 12 2021

Bài 5: 

a: Để đây là hàm số bậc nhất thì m+5<>0

hay m<>-5

2 tháng 3 2023

Bài 3.

a. Ta có: \(CK=BK\left(gt\right)\Rightarrow OK\perp BC\) 

Ta có: \(\widehat{OIC}=90^o\) 

           \(\widehat{OKC}=90^o\)

\(\Rightarrow\widehat{OIC}+\widehat{OKC}=90^o+90^o=180^o\)

`=>` Tứ giác CIOK nội tiếp đường tròn

b. Xét \(\Delta AID\) và \(\Delta CIB\), có:

\(\widehat{AID}=\widehat{CIB}=90^o\left(gt\right)\)

\(\widehat{ADI}=\widehat{CBI}\) ( cùng chắn \(\stackrel\frown{AC}\) )

Vậy \(\Delta AID\sim\Delta CIB\) ( g.g)

\(\Rightarrow\dfrac{IA}{IC}=\dfrac{ID}{IB}\)

\(\Leftrightarrow IC.ID=IA.IB\)

c. Kẻ \(DM\perp AC\)

Ta có: \(\widehat{ACB}=90^o\) ( góc nt chắn nửa đtròn )

`->` Tứ giác DMCK là hình chữ nhật

\(\rightarrow DK\perp BC\)

Mà \(OK\perp BC\)

\(\Rightarrow\) 3 điểm D,O,K thẳng hàng

2 tháng 3 2023

em cảm ơn ạ

 

NV
10 tháng 8 2021

Do ABCD là hình chữ nhật \(\Rightarrow\widehat{ABC}=90^0\Rightarrow\) B là góc nội tiếp chắn nửa đường tròn hay AC là đường kính

\(\Rightarrow AC=2R=100\left(cm\right)\)

Trong tam giác vuông ABC ta có:

\(sin\widehat{BAC}=\dfrac{BC}{AC}\Rightarrow BC=AC.sin\widehat{BAC}=100.sin30^0=50\left(cm\right)\)

\(\Rightarrow AD=BC=50\left(cm\right)\)

Áp dụng định lý Pitago:

\(AB=\sqrt{AC^2-BC^2}=50\sqrt{3}\left(cm\right)=CD\)

NV
10 tháng 8 2021

undefined

Bài 4:

a: Ta có: \(IA=IB=\dfrac{AB}{2}\)

\(DK=KC=\dfrac{DC}{2}\)

mà AB=DC

nên IA=IB=DK=KC

Xét tứ giác IBKD có 

IB//DK

IB=DK

Do đó: IBKD là hình bình hành

b: Xét tứ giác AIKD có 

AI//DK

AI=DK

Do đó: AIKD là hình bình hành

Suy ra: Hai đường chéo AK và DI cắt nhau tại trung điểm của mỗi đường

mà AK cắt DI tại E

nên E là trung điểm của DI

Suy ra: \(EI=\dfrac{DI}{2}\left(1\right)\)

Xét tứ giác BIKC có 

BI//KC

BI=KC

Do đó: BIKC là hình bình hành

Suy ra: Hai đường chéo IC và BK cắt nhau tại trung điểm của mỗi đường

mà IC cắt BK tại F

nên F là trung điểm của BK

\(\Leftrightarrow KF=\dfrac{BK}{2}\left(2\right)\)

Ta có: IBKD là hình bình hành

nên \(ID=BK\left(3\right)\) và ID=BK

Từ \(\left(1\right),\left(2\right),\left(3\right)\) suy ra EI//KF và EI=KF

Xét tứ giác IEKF có 

IE//KF

IE=KF

Do đó: IEKF là hình bình hành

Bài 4:

c: Xét tứ giác AICK có 

AI//CK

AI=CK

Do đó: AICK là hình bình hành

Suy ra: Hai đường chéo AC và IK cắt nhau tại trung điểm của mỗi đường\(\left(4\right)\)

Ta có: EIFK là hình bình hành

nên hai đường chéo EF và IK cắt nhau tại trung điểm của mỗi đường\(\left(5\right)\)

Từ \(\left(4\right),\left(5\right)\) suy ra AC,EF,IK đồng quy

Câu 5: 

a: Ta có: \(A=\left(x-1\right)\left(x-3\right)+11\)

\(=x^2-4x+3+11\)

\(=x^2-4x+4+10\)

\(=\left(x-2\right)^2+10\ge10\forall x\)

Dấu '=' xảy ra khi x=2

b: Ta có: \(B=3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)

\(=2^{32}-1\)

2 tháng 10 2021

Câu 5:

a) \(A=\left(x-1\right)\left(x-3\right)+11=x^2-4x+3+11\)

\(=x^2-4x+14\)

\(=\left(x^2-4x+4\right)+10=\left(x-2\right)^2+10\ge10\)

\(minA=10\Leftrightarrow x=2\)

b) \(B=3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=2^{32}-1\)

a: Ta có: \(A=\sin^21^0+\sin^22^0+...+\sin^288^0+\sin^289^0\)

\(=\left(\sin^21^0+\sin^289^0\right)+...+\sin^245^0\)

\(=1+1+...+1+\dfrac{1}{2}\)

\(=\dfrac{89}{2}\)