CMR với mọi a,b > 0:
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)Áp dụng bđt AM-GM:
\(2\left(ab+\frac{a}{b}+\frac{b}{a}\right)=\left(ab+\frac{a}{b}\right)+\left(ab+\frac{b}{a}\right)+\left(\frac{a}{b}+\frac{b}{a}\right)\ge2\left(a+b+1\right)\)
\(\Leftrightarrow ab+\frac{a}{b}+\frac{b}{a}\ge a+b+1."="\Leftrightarrow a=b=1\)
2) Áp dụng bđt AM-GM ta có: \(a+\frac{1}{a-1}=a-1+1+\frac{1}{a-1}\ge2\sqrt{\left(a-1\right).\frac{1}{a-1}}+1=3\)
\("="\Leftrightarrow a=2\)
3) Áp dụng bđt AM-GM:
\(2\left(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\right)=\left(\frac{ab}{c}+\frac{bc}{a}\right)+\left(\frac{ac}{b}+\frac{ab}{c}\right)+\left(\frac{bc}{a}+\frac{ac}{b}\right)\ge2\left(a+b+c\right)\)
Cộng theo vế và rg => ddpcm. Dấu bằng khi a=b=c
BĐT svac
\(\frac{1}{a}+\frac{1}{b}\ge\frac{\left(1+1\right)^2}{a+b}=\frac{4}{a+b}\forall a,b>0\)
\(VT=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}\right)\)
\(VT\ge\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}=\left(\frac{1}{a+b}+\frac{1}{b+c}\right)+\left(\frac{1}{b+c}+\frac{1}{c+a}\right)+\left(\frac{1}{a+b}+\frac{1}{c+a}\right)\)
\(VT\ge\frac{4}{a+2b+c}+\frac{4}{a+b+2c}+\frac{4}{2a+b+c}\)
Dấu "=" xảy ra khi \(a=b=c\)
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\frac{b}{ab}+\frac{a}{ab}\ge\frac{4}{a+b}\)
\(\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)\left(a+b\right)\ge4ab\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\left(đpcm\right)\)
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) \(\left(ĐK:a>0;b>0\right)\)
\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)\left(a+b\right)\ge4ab\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) (BĐT luôn đúng)
Vậy \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
a/ Biến đổi tương đương:
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow a^2+2ab+b^2\ge4ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Vậy BĐT được chứng minh
b/ \(VT=\frac{a-d}{b+d}+1+\frac{d-b}{b+c}+1+\frac{b-c}{a+c}+1+\frac{c-a}{a+d}+1-4\)
\(VT=\frac{a+b}{b+d}+\frac{c+d}{b+c}+\frac{a+b}{a+c}+\frac{c+d}{a+d}-4\)
\(VT=\left(a+b\right)\left(\frac{1}{b+d}+\frac{1}{a+c}\right)+\left(c+d\right)\left(\frac{1}{b+c}+\frac{1}{a+d}\right)-4\)
\(\Rightarrow VT\ge\left(a+b\right).\frac{4}{b+d+a+c}+\left(c+d\right).\frac{4}{b+c+a+d}-4\)
\(\Rightarrow VT\ge\frac{4}{\left(a+b+c+d\right)}\left(a+b+c+d\right)-4=4-4=0\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=d\)
Bài 1: \(a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\)
Áp dụng BĐT Cauchy cho 3 số dương ta thu được đpcm (mình làm ở đâu đó rồi mà:)
Dấu "=" xảy ra khi a =2; b =1 (tự giải ra)
Bài 2: Thêm đk a,b,c >0.
Theo BĐT Cauchy \(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{c^2}}=\frac{2a}{c}\). Tương tự với hai cặp còn lại và cộng theo vế ròi 6chia cho 2 hai có đpcm.
Bài 3: Nó sao sao ấy ta?
Ta có \(\frac{1a^2}{b}+b\ge2a\)
\(\frac{1b^2}{c}+c\ge2b\)
\(\frac{1c^2}{a}+a\ge2c\)
Cộng vế theo vế ta được
\(\frac{1a^2}{b}+\frac{b^2}{C}+\frac{c^2}{a}\)+ a + b + c \(\ge\)2(a + b + c)
<=> \(\frac{1a^2}{b}+\frac{b^2}{C}+\frac{c^2}{a}\)\(\ge\)a + b + c
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Rightarrow ab+b^2+a^2+ab\ge4ab\left(a,b>0\right)\)
<=>a2+b2-2ab\(\ge\)0
<=>(a-b)2\(\ge\)0(luôn đúng)
=>điều cần chứng minh
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\frac{a+b}{ab}\ge\frac{4}{a+b}\)
(a + b) (a + b) \(\ge\) 4ab
\(\Rightarrow\left(a+b\right)^2\ge4ab\)
Mà a,b > 0 nên a + b > 0
=> \(\left(a+b\right)^2\ge4ab\)