viết phân thức 10x - 4 / x^3 -4x dưới dạng tổng 3 phân thức mà mẫu thức theo thứ tự bằng x , x+2 ,,x-2 tử số là các hằng số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{x-2}+\frac{b}{\left(x+1\right)^2}=\frac{a\left(x+1\right)^2+b\left(x-2\right)}{\left(x-2\right)\left(x+1\right)^2}=\frac{ax^2+\left(2a+b\right)x+\left(a-2b\right)}{x^3-3x-2}\)
\(\Rightarrow\frac{x^2+5}{x^3-3x-2}=\frac{ax^2+\left(2a+b\right)x+\left(a-2b\right)}{x^3-3x-2}\)
Đồng nhất hệ số, ta có :
\(\hept{\begin{cases}a=1\\2a+b=0\\a-2b=5\end{cases}\Rightarrow\hept{\begin{cases}a=1\\b=-2\end{cases}}}\)
a)Ta có:
Để phân thức là số nguyên thì phải là số nguyên (với giá trị nguyên của x).
nguyên thì x +2 phải là ước của 3.
Các ước của 3 là . Do đó
Vậy
Cách khác:
=
Đề bài bạn viết hơi khó hiểu, nhưng có thể tạm giải như sau:
Lời giải:
$A=\frac{4x^2}{x+1}=\frac{4(x^2-1)+4}{x+1}=\frac{4(x-1)(x+1)+4}{x+1}$
$=4(x-1)+\frac{4}{x+1}$
Với $x$ nguyên thì:
$A\in\mathbb{Z}\Leftrightarrow 4(x-1)+\frac{4}{x+1}\in\mathbb{Z}$
$\Leftrightarrow \frac{4}{x+1}\in\mathbb{Z}$
$\Leftrightarrow x+1$ là ước của $4$
$\Rightarrow x+1\in\left\{\pm 1;\pm 2;\pm 4\right\}$
$\Rightarrow x\in\left\{-2; 0; -3; 1; 3; -5\right\}$
Lời giải:
$x^6-x^4+x^2-1=x^4(x^2-1)+(x^2-1)=(x^2-1)(x^4+1)$
$=\frac{(x^2-1)(x^2+1)(x^4+1)}{x^2+1}=\frac{(x^4-1)(x^4+1)}{x^2+1}=\frac{x^8-1}{x^2+1}$
(Tách -4x = 6x – 10x để nhóm với 3x2 xuất hiện x + 2)
⇔ x + 2 ∈ Ư(3) = {±1; ±3}
+ x + 2 = 1 ⇔ x = -1
+ x + 2 = -1 ⇔ x = -3
+ x + 2 = 3 ⇔ x = 1
+ x + 2 = -3 ⇔ x = -5
Vậy với x = ±1 ; x = -3 hoặc x = -5 thì phân thức có giá trị nguyên.
⇔ x – 3 ∈ Ư(8) = {±1; ±2; ±4; ±8}
+ x – 3 = 1 ⇔ x = 4
+ x – 3 = -1 ⇔ x = 2
+ x – 3 = 2 ⇔ x = 5
+ x – 3 = -2 ⇔ x = 1
+ x – 3 = 4 ⇔ x = 7
+ x – 3 = -4 ⇔ x = -1
+ x – 3 = 8 ⇔ x = 11
+ x – 3 = -8 ⇔ x = -5.
Vậy với x ∈ {-5; -1; 1; 2; 4; 5; 7; 11} thì giá trị phân thức là số nguyên.