Tính \(P=1.4.7+4.7.10+...+2021.2024.2027\)
Mình đang cần gấp ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2}{1.4.7}+\frac{2}{4.7.10}+...+\frac{2}{58.61.64}\)
\(=\frac{1}{3}.\left(\frac{6}{1.4.7}+\frac{6}{4.7.10}+...+\frac{6}{58.61.64}\right)\)
\(=\frac{1}{3}.\left(\frac{7 - 1}{1.4.7}+\frac{10 - 4}{4.7.10}+...+\frac{64 - 58}{58.61.64}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{4}-\frac{1}{4.7}+\frac{1}{4.7}-\frac{1}{7.10}+...+\frac{1}{58.61}-\frac{1}{61.64}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{4}-\frac{1}{61.64}\right)=\frac{1}{3}.\left(\frac{1}{4}-\frac{1}{3904}\right)=\frac{1}{3}.\frac{975}{3904}=\frac{325}{3904}\)
\(\text{Giải :}\)
\(\frac{2}{1.4.7}+\frac{2}{4.7.10}+...+\frac{2}{58.61.64}=\frac{1}{3}.\left(\frac{6}{1.4.7}+\frac{6}{4.7.10}+...+\frac{6}{58.61.64}\right)\)
\(=\frac{1}{3}.\left(\frac{7-1}{1.4.7}+\frac{10-4}{4.7.10}+...+\frac{64-58}{58.61.64}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{4}-\frac{1}{4.7}+\frac{1}{4.7}-\frac{1}{7.10}+...+\frac{1}{58.61}-\frac{1}{61.64}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{4}-\frac{1}{61.64}\right)=\frac{1}{3}.\left(\frac{1}{4}-\frac{1}{3904}\right)=\frac{1}{3}.\frac{975}{3904}=\frac{325}{3904}\)
\(\text{#Hok tốt!}\)
\(\frac{2}{1.4.7}+\frac{2}{4.7.10}+...+\frac{2}{58.61.64}\)
\(=\frac{1}{3}\left(\frac{6}{1.4.7}+\frac{6}{4.7.10}+...+\frac{6}{58.61.64}\right)\)
\(=\frac{1}{3}\left(\frac{7-1}{1.4.7}+\frac{10-4}{4.7.10}+...+\frac{64-58}{58.61.64}\right)\)
\(=\frac{1}{3}\left(\frac{1}{1.4}-\frac{1}{4.7}+\frac{1}{4.7}-\frac{1}{7.10}+...+\frac{1}{58.61}-\frac{1}{61.64}\right)\)
\(=\frac{1}{3}\left(\frac{1}{1.4}-\frac{1}{61.64}\right)\)
\(=\frac{325}{3904}\)
\(P=\frac{12}{1.4.7}+\frac{12}{4.7.10}+\frac{12}{7.10.13}+...+\frac{12}{54.57.60}\)
\(P=4.\left(\frac{3}{1.4.7}+\frac{3}{4.7.10}+\frac{3}{7.10.13}+...+\frac{3}{54.57.60}\right)\)
\(P=4\left(\frac{1}{1.4}-\frac{1}{4.7}+\frac{1}{4.7}-\frac{1}{7.10}+\frac{1}{7.10}+...+\frac{1}{54.57}-\frac{1}{57.60}\right)\)
\(P=4.\left(\frac{1}{4}-\frac{1}{3420}\right)\)
\(P=4.\frac{427}{1710}\)
\(P=\frac{854}{855}\)
Ta có \(A=\frac{1}{1.4}-\frac{1}{4.7}+\frac{1}{4.7}-\frac{1}{7.10}+\frac{1}{7.10}-...+\frac{1}{16.19}-\frac{1}{19.22}\)
\(=\frac{1}{4}-\frac{1}{418}=\frac{207}{836}\)
\(A=\frac{6}{1\cdot4\cdot7}+\frac{6}{4\cdot7\cdot10}+\frac{6}{7\cdot10\cdot13}+...+\frac{6}{16\cdot19\cdot22}\)
\(A=\frac{1}{1\cdot4}-\frac{1}{4\cdot7}+\frac{1}{4\cdot7}-\frac{1}{7\cdot10}+...+\frac{1}{16\cdot19}-\frac{1}{19\cdot22}\)
\(A=\frac{1}{4}-\frac{1}{19\cdot22}=\frac{207}{836}\)
\(1.4.7+4.7.10+...+n\left(n+3\right)\left(n+6\right)\\ =\dfrac{n^2\left(n+1\right)^2}{4}+9\cdot\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}+18\cdot\dfrac{n\left(n+1\right)}{2}\)
\(=\dfrac{n\left(n+1\right)\left(n^2+13n+42\right)}{4}=\dfrac{n\left(n+1\right)\left(n+6\right)\left(n+7\right)}{4}\)
Áp dụng vào bài toán:
\(P=\dfrac{2021.2022.2027.2028}{4}=...\)
CM:
Với \(n=1\Leftrightarrow1.4.7=28\)
\(\dfrac{n\left(n+1\right)\left(n+6\right)\left(n+7\right)}{4}=\dfrac{2.7.8}{4}=28\)
Giả sử \(n=k\Leftrightarrow1.4.7+4.7.10+...+k\left(k+3\right)\left(k+6\right)=\dfrac{k\left(k+1\right)\left(k+6\right)\left(k+7\right)}{4}\)
Với \(n=k+1\), cần cm:
\(1.4.7+4.7.10+...+k\left(k+3\right)\left(k+6\right)+\left(k+1\right)\left(k+4\right)\left(k+7\right)=\dfrac{\left(k+1\right)\left(k+2\right)\left(k+7\right)\left(k+8\right)}{4}\)
Ta có \(VT=\dfrac{k\left(k+1\right)\left(k+6\right)\left(k+7\right)}{4}+\left(k+1\right)\left(k+4\right)\left(k+7\right)\)
\(=\left(k+1\right)\left(k+7\right)\left[\dfrac{k\left(k+6\right)}{4}+k+4\right]=\left(k+1\right)\left(k+7\right)\left(\dfrac{k^2+10k+16}{4}\right)\\ =\dfrac{\left(k+1\right)\left(k+7\right)\left(k+2\right)\left(k+8\right)}{4}=VP\)
Do đó theo pp quy nạp ta đc đpcm