K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2021

\(1.4.7+4.7.10+...+n\left(n+3\right)\left(n+6\right)\\ =\dfrac{n^2\left(n+1\right)^2}{4}+9\cdot\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}+18\cdot\dfrac{n\left(n+1\right)}{2}\)

\(=\dfrac{n\left(n+1\right)\left(n^2+13n+42\right)}{4}=\dfrac{n\left(n+1\right)\left(n+6\right)\left(n+7\right)}{4}\)

Áp dụng vào bài toán:

\(P=\dfrac{2021.2022.2027.2028}{4}=...\)

12 tháng 12 2021

CM: 

Với \(n=1\Leftrightarrow1.4.7=28\)

\(\dfrac{n\left(n+1\right)\left(n+6\right)\left(n+7\right)}{4}=\dfrac{2.7.8}{4}=28\)

Giả sử \(n=k\Leftrightarrow1.4.7+4.7.10+...+k\left(k+3\right)\left(k+6\right)=\dfrac{k\left(k+1\right)\left(k+6\right)\left(k+7\right)}{4}\)

Với \(n=k+1\), cần cm:

\(1.4.7+4.7.10+...+k\left(k+3\right)\left(k+6\right)+\left(k+1\right)\left(k+4\right)\left(k+7\right)=\dfrac{\left(k+1\right)\left(k+2\right)\left(k+7\right)\left(k+8\right)}{4}\)

Ta có \(VT=\dfrac{k\left(k+1\right)\left(k+6\right)\left(k+7\right)}{4}+\left(k+1\right)\left(k+4\right)\left(k+7\right)\)

\(=\left(k+1\right)\left(k+7\right)\left[\dfrac{k\left(k+6\right)}{4}+k+4\right]=\left(k+1\right)\left(k+7\right)\left(\dfrac{k^2+10k+16}{4}\right)\\ =\dfrac{\left(k+1\right)\left(k+7\right)\left(k+2\right)\left(k+8\right)}{4}=VP\)

Do đó theo pp quy nạp ta đc đpcm

\(\frac{2}{1.4.7}+\frac{2}{4.7.10}+...+\frac{2}{58.61.64}\)

\(=\frac{1}{3}.\left(\frac{6}{1.4.7}+\frac{6}{4.7.10}+...+\frac{6}{58.61.64}\right)\)

\(=\frac{1}{3}.\left(\frac{7 - 1}{1.4.7}+\frac{10 - 4}{4.7.10}+...+\frac{64 - 58}{58.61.64}\right)\)

\(=\frac{1}{3}.\left(\frac{1}{4}-\frac{1}{4.7}+\frac{1}{4.7}-\frac{1}{7.10}+...+\frac{1}{58.61}-\frac{1}{61.64}\right)\)

\(=\frac{1}{3}.\left(\frac{1}{4}-\frac{1}{61.64}\right)=\frac{1}{3}.\left(\frac{1}{4}-\frac{1}{3904}\right)=\frac{1}{3}.\frac{975}{3904}=\frac{325}{3904}\)

\(\text{Giải :}\)

\(\frac{2}{1.4.7}+\frac{2}{4.7.10}+...+\frac{2}{58.61.64}=\frac{1}{3}.\left(\frac{6}{1.4.7}+\frac{6}{4.7.10}+...+\frac{6}{58.61.64}\right)\)

\(=\frac{1}{3}.\left(\frac{7-1}{1.4.7}+\frac{10-4}{4.7.10}+...+\frac{64-58}{58.61.64}\right)\)

\(=\frac{1}{3}.\left(\frac{1}{4}-\frac{1}{4.7}+\frac{1}{4.7}-\frac{1}{7.10}+...+\frac{1}{58.61}-\frac{1}{61.64}\right)\)

\(=\frac{1}{3}.\left(\frac{1}{4}-\frac{1}{61.64}\right)=\frac{1}{3}.\left(\frac{1}{4}-\frac{1}{3904}\right)=\frac{1}{3}.\frac{975}{3904}=\frac{325}{3904}\)

\(\text{#Hok tốt!}\)

DD
14 tháng 7 2021

\(\frac{2}{1.4.7}+\frac{2}{4.7.10}+...+\frac{2}{58.61.64}\)

\(=\frac{1}{3}\left(\frac{6}{1.4.7}+\frac{6}{4.7.10}+...+\frac{6}{58.61.64}\right)\)

\(=\frac{1}{3}\left(\frac{7-1}{1.4.7}+\frac{10-4}{4.7.10}+...+\frac{64-58}{58.61.64}\right)\)

\(=\frac{1}{3}\left(\frac{1}{1.4}-\frac{1}{4.7}+\frac{1}{4.7}-\frac{1}{7.10}+...+\frac{1}{58.61}-\frac{1}{61.64}\right)\)

\(=\frac{1}{3}\left(\frac{1}{1.4}-\frac{1}{61.64}\right)\)

\(=\frac{325}{3904}\)

2 tháng 3 2017

\(P=\frac{12}{1.4.7}+\frac{12}{4.7.10}+\frac{12}{7.10.13}+...+\frac{12}{54.57.60}\)

\(P=4.\left(\frac{3}{1.4.7}+\frac{3}{4.7.10}+\frac{3}{7.10.13}+...+\frac{3}{54.57.60}\right)\)

\(P=4\left(\frac{1}{1.4}-\frac{1}{4.7}+\frac{1}{4.7}-\frac{1}{7.10}+\frac{1}{7.10}+...+\frac{1}{54.57}-\frac{1}{57.60}\right)\)

\(P=4.\left(\frac{1}{4}-\frac{1}{3420}\right)\)

\(P=4.\frac{427}{1710}\)

\(P=\frac{854}{855}\)

6 tháng 3 2016

=2.(6/1.4.7 + 6/4.7.10 + 6/7.10.13 + ... + 6/54.57.60)

=2.(1/1.4-1/4.7+1/4.7-1/7.10+1/7.10-1/10.13+...+1/54.57-1/57.60)

=2(1.4-1/57.60)

TỰ TÍNH

13 tháng 5 2019

Ta có \(A=\frac{1}{1.4}-\frac{1}{4.7}+\frac{1}{4.7}-\frac{1}{7.10}+\frac{1}{7.10}-...+\frac{1}{16.19}-\frac{1}{19.22}\)

\(=\frac{1}{4}-\frac{1}{418}=\frac{207}{836}\)

13 tháng 5 2019

\(A=\frac{6}{1\cdot4\cdot7}+\frac{6}{4\cdot7\cdot10}+\frac{6}{7\cdot10\cdot13}+...+\frac{6}{16\cdot19\cdot22}\)

\(A=\frac{1}{1\cdot4}-\frac{1}{4\cdot7}+\frac{1}{4\cdot7}-\frac{1}{7\cdot10}+...+\frac{1}{16\cdot19}-\frac{1}{19\cdot22}\)

\(A=\frac{1}{4}-\frac{1}{19\cdot22}=\frac{207}{836}\)