Em cần gấp lắm rồi, mong mọi người giúp em ạ.
Cho tam giác nhọn ABC (AB<AC) và M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD=MA.
a) Chứng minh tam giác AMB=tam giác DMC và AB song song với CD (Em biết làm câu này rồi ạ)
b) Vẽ AH vuông góc với BC tại H. Trên tia đối tia HA lấy điểm E sao cho HE=HA. Chứng minh BE=CD.
c) Lấy điểm F trên cạnh AC. Qua F vẽ đường thẳng song song với BC cắt AM tại I. Trên đoạn thẳng MC lấy điểm K sao cho MK=FI. Chứng minh góc KFC=góc MAC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét ΔABE và ΔDBE có
BA=BD
\(\widehat{ABE}=\widehat{DBE}\)
BE chung
Do đó: ΔABE=ΔDBE
a: Xét ΔABC có
D là trung điểm của AB
E là trung điểm của AC
Do đó: DE là đường trung bình của ΔABC
Suy ra: DE//BC
Kẻ \(AH\perp BC\). Đặt BH = x thì \(CH=60-x\)
Xét tam giác vuông ABH có: \(AH=tan50^o.x\)
Xét tam giác vuông ACH có: \(AH=tan37^o.\left(60-x\right)\)
Vậy nên ta có: \(tan50.x=tan37^o.\left(60-x\right)\)
\(\Leftrightarrow\left(tan50^o+tan37^o\right).x=tan37^o.60\)
\(\Leftrightarrow x=\frac{tan37^o.60}{tan50^o+tan37^o}\) (cm)
Vậy thì \(AB=\frac{x}{cos50^o}=\frac{tan37^o.60}{cos50^o\left(tan50^o+tan37^o\right)}\) (cm)
\(AH=x.tan50^o=\frac{tan50^o.tan37^o.60}{\left(tan50^o+tan37^o\right)}\) (cm)
\(AC=\frac{AH}{sin37^o}=\frac{tan50^o.60}{cos37^o\left(tan50^o+tan37^o\right)}\) (cm)
\(S_{ABC}=\frac{1}{2}.BC.AH=\frac{30tan50^o.tan37^o.60}{tan50^o+tan37^o}=\frac{1800tan50^o.tan37^o}{tan50^o+tan37^o}\left(cm^2\right)\)
b: Xét tứ giác ABFC có
E là trung điểm của AF
E là trung điểm của BC
Do đó: ABFC là hình bình hành
Suy ra: CF//AB
b: Xét tứ giác ABFC có
E là trung điểm của BC
E là trung điểm của FA
Do đó: ABFC là hình bình hành
Suy ra: CF//AB
a: ΔOIK cân tại O
mà OD là đừog cao
nên D là trung điểm của IK
b: Xét ΔFDC vuông tại D và ΔFAE vuông tại A có
góc DFC=góc AFE
=>ΔFDC đồng dạng với ΔFAE
=>FD/FA=FC/FE
=>FD*FE=FC*FA
kinh thế dài thế này giải hơi lâu á
a: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: AB//CD