K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2018

b) n + 3 \(⋮\) n - 1 <=> (n - 1) + 4 \(⋮\) n - 1

=> 4 \(⋮\) n - 1 (vì n - 1 \(⋮\) n - 1)

=> n - 1 ∈ Ư(4) = {±1; ±2; ±4}

Lập bảng giá trị:

n - 11-12-24-4
n203-15-3

Vậy n ∈ {2; 0; 3; -1; 5; -3}

27 tháng 1 2018

phần a,c mk ko biết làm nhé ~

b) n + 3  n - 1 <=> (n - 1) + 4  n - 1

=> 4  n - 1 (vì n - 1  n - 1)

=> n - 1 ∈ Ư(4) = {±1; ±2; ±4}

Lập bảng giá trị:

n - 11-12-24-4
n203-15-3

Vậy n ∈ {2; 0; 3; -1; 5; -3}

chúc các bn hok tốt !

10 tháng 8 2016

2A = 1 + 1/2 + 1/22 + 1/23 + ... + 1/248+ 1/249

2A - A = (1 + 1/2 + 1/22 + 1/2+ ... + 1/248 + 1/249) - (1/2 + 1/22 + 1/23 + 1/24 + ... + 1/249 + 1/250)

A = 1 - 1/250

14 tháng 4 2019

ta có : \(B=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

          \(B=\left(1+\frac{1}{3}+\frac{1}{5}+....+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

          \(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+....+\frac{1}{49}+\frac{1}{50}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+...+\frac{1}{50}\right)\)

            \(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{49}+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{25}\right)\)

             \(B=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{49}+\frac{1}{50}\)

\(\Rightarrow\)\(B=A\)

23 tháng 7 2015

a)\(A=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}+\frac{1}{2^{49}}\)

\(A=1-\frac{1}{2^{50}}<1\)

Vậy \(A=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}<1\)

b)\(B=\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}+\frac{1}{3^{100}}\)

\(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}\)

\(3B-B=2B=1-\frac{1}{3^{100}}\)

\(B=\frac{1-\frac{1}{3^{100}}}{2}\)

\(1-\frac{1}{3^{100}}<1\)nên\(\frac{1-\frac{1}{3^{100}}}{2}<\frac{1}{2}\)

Vậy \(B=\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}+\frac{1}{3^{100}}<\frac{1}{2}\)

c) \(C=\frac{1}{4^1}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{999}}+\frac{1}{4^{1000}}\)

\(4C=1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{998}}+\frac{1}{4^{999}}\)

\(4C-C=3C=1-\frac{1}{4^{1000}}\)

\(C=\frac{1-\frac{1}{4^{1000}}}{3}\)

\(1-\frac{1}{4^{1000}}<1\)nên\(\frac{1-\frac{1}{4^{1000}}}{3}<\frac{1}{3}\) 

Vậy \(C=\frac{1}{4^1}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{999}}+\frac{1}{4^{1000}}<\frac{1}{3}\)

 

22 tháng 12 2016

Bạn Detective_conan giải đúng đấy!

30 tháng 4 2018

Đương nhiên là a<b rồi,vì A thuộc B mà

18 tháng 4 2019

ChoA=1/26+1/27+1/28+..  +1/49, B=1-1/2+1/3-1/4+... +1/49-1/50

8 tháng 12 2015

> nhé bạn           

8 tháng 5 2016

\(A=2+\frac{3}{4}+\frac{8}{9}+......+\frac{2499}{2500}\)

\(A=2+\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+.....+\left(1-\frac{1}{2500}\right)\)

\(A=2+1-\frac{1}{4}+1-\frac{1}{9}+.........+1-\frac{1}{2500}\)

\(A=2+\left(1+1+....+1\right)-\left(\frac{1}{4}+\frac{1}{9}+....+\frac{1}{2500}\right)\)

\(A=2+\left(1+1+....+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+......+\frac{1}{50^2}\right)\)

Vì mỗi số 1 đều đi với 1 phân số nên có số số 1 là: (50-1)/1+1=50(số)

\(A=52-\left(\frac{1}{2^2}+\frac{1}{3^2}+.......+\frac{1}{50^2}\right)\)

\(\frac{1}{2^2}<\frac{1}{1\cdot2}\)

\(\frac{1}{3^2}<\frac{1}{2\cdot3}\)

.........

\(\frac{1}{50^2}<\frac{1}{49\cdot50}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{50^2}<\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+.....+\frac{1}{49\cdot50}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{50^2}<\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{50^2}<\frac{1}{1}-\frac{1}{50}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{50^2}<\frac{49}{50}\)

\(\Rightarrow52-\left(\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{50^2}\right)>52-\frac{49}{50}\)

\(\Rightarrow A>51\frac{1}{50}\)

\(51\frac{1}{50}>50\Rightarrow A>50\)