tìm giá trị biểu thức \(J=C_{20}^0-2^2C^1_{20}+2^4C^2_{20}-...+2^{40}C^{20}_{20}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét khai triển:
\(\left(x+1\right)^{20}=C_{20}^0+C_{20}^1x+C_{20}^2x^2+...+C_{20}^{20}x^{20}\)
Chia 2 vế cho x ta được:
\(\dfrac{\left(x+1\right)^{20}}{x}=\dfrac{1}{x}+C_{20}^1+C_{20}^2x+...+C_{20}^{20}.x^{19}\)
Thay \(x=2\)
\(\Rightarrow\dfrac{3^{20}}{2}=\dfrac{1}{2}+C_{20}^1+2C_{20}^2+2^2C_{20}^3+...+2^{19}C_{20}^{20}\)
\(\Rightarrow S=\dfrac{3^{20}-1}{2}\)
a) Để tính \(A_{15}^{10}\) ta ấn liên tiếp các phím
Thì nhận được kết quả là \(1,{08972864.10^{10}}\)
b) Để tính \(C_{10}^6 + C_{10}^7 + C_{11}^8\) thì ta ấn liên tiếp các phím
Thì ta nhận được kết quả là 495
c) Để tính \(C_5^1C_{20}^2 + C_5^2C_{20}^1\) thì ta ấn liên tiếp các phím
Thì ta được kết quả là 1150
1.
Ta thấy $(x-13)^2\geq 0$ với mọi $x$
$\Rightarrow T=(x-13)^2-26\geq 0-26=-26$
Vậy GTNN của $T$ là $-26$.
Giá trị này đạt tại $x-13=0\Leftrightarrow x=13$
2.
Ta thấy: $(x-14)^2\geq 0$ với mọi $x$
$\Rightarrow M=20-(x-14)^2\leq 20-0=20$
Vậy $M_{\max}=20$. Giá trị này đạt tại $x-14=0$
Hay $x=14$.
-Có \(\left|x+1\right|+\left(y-2\right)^2=0\)
-Vì \(\left|x+1\right|\ge0\forall x;\left(y-2\right)^2\ge0\forall y\)
\(\Rightarrow\left|x+1\right|=0\) ; \(\left(y-2\right)^2=0\)
\(\Rightarrow x=-1;y=2\)
-Thay \(x=-1;y=2\) vào \(C=2x^6y-3xy^3-20\) ta được:
\(C=2.\left(-1\right)^6.2-3.\left(-1\right).2^3-20=8\)
\(C=x^2-8x+20\\ C=x^2-8x+16+4\\ C=\left(x-4\right)^2+4\ge4\)
\(MinC=0\Leftrightarrow x-4=0\Leftrightarrow x=4\\ MinC=4\Leftrightarrow x=4\)
Ta có : R = \(9x^2\) - \(6xy+2y^2\) + \(5\)
= \(\left(3x\right)^2\) - \(2.3x.\sqrt{2}^2\) + \(\left(\sqrt{2}y\right)^2\) + 5
= \(\left(3x-\sqrt{2}y\right)^2\) + 5
Vậy min R = 5 khi \(\left(3x-\sqrt{2}y\right)^2\) =0
Sao em viết chữ giống anh mà bố mẹ em bảo xấu mà người khác mà viết thế bố mẹ em bảo đẹp thế là thế nào nhỉ?
Xét khai triển:
\(\left(x^2-1\right)^{20}=C_{20}^0-C_{20}^1.x^2+C_{20}^2x^4-...+C_{20}^{20}x^{20}\)
Thay \(x=2\)
\(\Rightarrow3^{20}=C_{20}^0-2^2C_{20}^1+2^4C_{20}^2-...+2^{40}C_{20}^{20}\)
\(\Rightarrow J=3^{20}\)