cho a,b,c>0,a+b+c=1. tìm gtnn của A=1/abc+1/a^2+b^2+c^2
mọi ng ơi giúp mình, nhớ làm chi tiết nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a=b=c=2 thay vào ra min cái này là tay tui tự gõ ra a=b=c=2 chả có bước nào. còn chi tiết sau nhớ nhắc tui làm :D
Áp dụng BĐT Mincopxki và AM-GM có:
\(T=\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}}+\sqrt{c^2+\frac{1}{a^2}}\)
\(\ge\sqrt{\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}\)
\(\ge\sqrt{\left(a+b+c\right)^2+\frac{81}{\left(a+b+c\right)^2}}\)
\(=\sqrt{\frac{81}{\left(a+b+c\right)^2}+\frac{\left(a+b+c\right)^2}{16}+\frac{15\left(a+b+c\right)^2}{16}}\)
\(=\sqrt{2\sqrt{\frac{81}{\left(a+b+c\right)^2}\cdot\frac{\left(a+b+c\right)^2}{16}}+\frac{15\cdot6^2}{16}}\)
\(=\sqrt{2\sqrt{\frac{81}{16}}+\frac{15\cdot6^2}{16}}=\frac{3\sqrt{17}}{2}\)
Khi \(a=b=c=2\)
Dễ thấy với a,b >0 thì (a+b)/2 ≥ √ab <=> 1/(a+b) ≤ 1/4 (1/a +1/b)
Áp dụng bất đẳng thức Cauchy ta được
1/(a+2b+3c)=1/[(a+c)+2(b+c)]≤ 1/4[1/(a+c)+1/2(b+c)] (lại áp dụng tiếp được)
≤ 1/16a+1/16c+1/32b+1/32c
=1/16a+1/32b+3/32c
Trường hợp này dấu "=" xảy ra <=> a+c=2(b+c);a=c;b=c <=> c= 0 mâu thuẩn giả thiết
Do đó dấu "=" không xảy ra
Thế thì 1/(a+2b+3c)<1/16a+1/32b+3/32c (1)
Tương tự 1/( b+2c+3a)<1/16b+1/32c+3/32a (2)
1/ ( c+2a+3b) < 1/16c+1/32a+3/32b (3)
Cộng (1)(2)(3) cho ta
1/( a+2b+3c) + 1/( b+2c+3a) + 1/ ( c+2a+3b) <(1/16+1/32+3/32)(1/a+1/b+1/c)
=3/16*(ab+bc+ca)abc= 3/16
tk nha mk trả lời đầu tiên đó!!!
`P=a+b+c+1/a+1/b+1/c`
`=a+1/(9a)+b+1/(9b)+c+1/(9c)+8/9(1/a+1/b+1/c)`
Áp dụng BĐT cosi:
`a+1/(9a)>=2/3`
`b+1/(9b)>=2/3
`c+1/(9c)>=2/3`
Áp dụng BĐT cosi schwart
`1/a+1/b+1/c>=9/(a+b+c)>=9`
`<=>8/9(1/a+1/b+1/c)>=8`
`=>P>=2/3+2/3+2/3+8=10`
Dấu "=" xảy ra khi `a=b=c=1/3`
Nãy ghi nhầm :v
`P=a+b+c+1/a+1/b+1/c`
`=a+1/(9a)+b+1/(9b)+c+1/(9c)+8/9(1/a+1/b+1/c)`
Áp dụng BĐT cosi:
`a+1/(9a)>=2/3`
`b+1/(9b)>=2/3`
`c+1/(9c)>=2/3`
Áp dụng BĐT cosi schwart
`1/a+1/b+1/c>=9/(a+b+c)>=9`
`<=>8/9(1/a+1/b+1/c)>=8`
`=>P>=2/3+2/3+2/3+8=10`
Dấu "=" xảy ra khi `a=b=c=1/3`
Do a,b,c có vai trò hoán vị vòng quang.Ta dự đoán dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
Ta có: \(A=\frac{1}{a^2+b^2+c^2}+\frac{1}{abc}=\left(\frac{1}{a^2+b^2+c^2}+\frac{1}{9abc}\right)+\frac{8}{9abc}\)
\(\ge\frac{4}{a^2+b^2+c^2+9abc}+\frac{8}{9abc}=\frac{4}{a^2+b^2+c^2+9abc}+\frac{4}{9abc}+\frac{4}{9abc}\)
\(\ge\frac{\left(2+2+2\right)^2}{a^2+b^2+c^2+27abc}=\frac{36}{a^2+b^2+c^2+27abc}\) (Cauchy-Schwarz dạng Engel)
\(\ge\frac{36}{a^2+b^2+c^2+\left(a+b+c\right)^3}=\frac{36}{a^2+b^2+c^2+1}+\frac{a^2+b^2+c^2+1}{36}-\frac{a^2+b^2+c^2+1}{36}\)(Cô si kết hợp giả thiết a + b + c = 1)
\(\ge2-\frac{a^2+b^2+c^2+1}{36}\)
Tới đây bí:v
Áp dụng BĐT cô si cho 3 số không âm ta có:
\(\frac{4a+1+1}{2}\ge\sqrt{4a+1}\Leftrightarrow\frac{4a+2}{2}\ge\sqrt{4a+1}\Leftrightarrow2a+1\ge\sqrt{4a+1}\)
Mà a>0 nên: \(2a+1>\sqrt{4a+1}\)
Tương tự với \(\sqrt{4b+1}\) và \(\sqrt{4c+1}\) ta có:
\(2b+1>\sqrt{4b+1};2c+1>\sqrt{4c+1}\)
=>\(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}<2a+1+2b+1+2c+1\)
\(=2.\left(a+b+c\right)+3=2.1+3=5\)
=>điều phải chứng minh
Tìm GTLN ko phải tìm GTNN
Ta có: \(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}=1\) (*)
Lại có: \(\left(a+1\right)^2+b^2+1=a^2+b^2+2a+2\ge2ab+2a+2=2\left(ab+a+1\right)\)
\(\Rightarrow\frac{1}{\left(a+1\right)^2+b^2+1}\le\frac{1}{2\left(ab+a+1\right)}\) tương tự ta có:
\(\frac{1}{\left(b+1\right)^2+c^2+1}\le\frac{1}{2\left(bc+b+1\right)};\frac{1}{\left(c+1\right)^2+a^2+1}\le\frac{1}{2\left(ca+c+1\right)}\)
Cộng theo vế ta có: \(P\le\frac{1}{2\left(ab+a+1\right)}+\frac{1}{2\left(bc+b+1\right)}+\frac{1}{2\left(ca+c+1\right)}\)
\(=\frac{1}{2}\left(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\right)=\frac{1}{2}\) theo (*)
Dấu "=" khi a=b=c=1