K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2016

m = 3/2 = 1.5 >1

27 tháng 2 2016

kich mk di

diem mk thap qua

thank you

26 tháng 6 2015

Vì a,b,c là các số tự nhiên khác 0 nên a,b,c > 0.

Do vậy a < a + b < a + b + c

           b < b + c < a + b + c

           c < c + a < a + b + c

\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

29 tháng 2 2016

Đáp số là M > 1. Bạn cần cách giải không ?

29 tháng 2 2016

Co minh biet ket qua roi ban HiHI

12 tháng 1 2016

A<b

B<a

A=b

(cái nào cũng đúng)

12 tháng 1 2016

có ba đáp án 

A  <

B   >

C   =

7 tháng 7 2016

cần gấp mai sẽ lam cho

7 tháng 7 2016

\(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)

\(=\left(1-\frac{b}{a+b}\right)+\left(1-\frac{c}{b+c}\right)+\left(1-\frac{a}{c+a}\right)\)

\(< 3-\left(\frac{b}{a+b+c}+\frac{c}{b+c+a}+\frac{a}{c+a+b}\right)=3-1=2\)

=>M < 2

20 tháng 8 2018

Áp dụng tính chất của các dãy số bằng nhau ta có :

 a/b = b/c = c/a = a + b + c/ b + c + a

=> a/b = b/c = c/a = 1

Vậy....

27 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

9 tháng 4 2018

Ta có : 

\(\frac{a}{b+c}>\frac{a}{a+b+c}\)

\(\frac{b}{c+a}>\frac{b}{a+b+c}\)

\(\frac{c}{a+b}>\frac{c}{a+b+c}\)

\(\Rightarrow\)\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}>\frac{a+b+c}{a+b+c}\)

\(\Rightarrow\frac{a}{c+b}+\frac{b}{a+c}+\frac{c}{a+b}>1\)

Chúc bạn học tốt !!! 

9 tháng 4 2018

a/b+c > a/a+b+c           (1)

b/c+a > b/a+b+c           (2)

c/a+b > c/a+b+c           (3)

Lấy (1)+(2)+(3) ta có

a/b+c + b/c+a +c/a+b < 1

24 tháng 7 2015

\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)