So sánh \(A=\frac{19^{2015}+3}{19^{2016}+3}vàB=\frac{19^{2014}+3}{19^{2015+3}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không cần giải cũng biết đáp án:
Nếu A là số dương thì A^2016>A^2015
Nếu A là số âm thì A^2016 là số dương , A^2015 là số âm nên chắc chắn A^2016>A^2015
k nha
\(A=\frac{19^5-1+2017}{19^5-1}=1+\frac{2017}{19^5-1}\)
\(B=\frac{19^5+2015}{19^5-2}=\frac{19^5-2+2017}{19^5-2}=1+\frac{2017}{19^5-2}\)
\(\Rightarrow1+\frac{2017}{19^5-1}< 1+\frac{2017}{19^5-2}\)
\(\Rightarrow A< B\)
ta thấy:B>1
=>\(B=\frac{19^5+2015}{19^5-2}>\frac{19^5+2015+1}{19^5-2+1}=\frac{19^5+2016}{19^5-1}=A\Rightarrow B>A\)
vậy.....
A=192015-1/192017-1
=>192A=192017-192/192017-1
=>192A=1-(192-1)/192017-1
B=192014-1/192016-1
=>192B=192016-192/192016-1
=>192B=1-(192-1)/(192016-1)
Có (192-1)/(192017-1)<(192-1)/(192016-1)
=>192B<192A<=>B<A
\(M=\frac{\frac{3}{19}+\frac{3}{5}-\frac{3}{2015}}{\frac{4}{19}-\frac{4}{2015}+\frac{4}{5}}=\frac{\frac{3}{19}+\frac{3}{5}-\frac{3}{2015}}{\frac{4}{19}+\frac{4}{5}-\frac{4}{2015}}\)
\(\frac{3\left(\frac{1}{19}+\frac{1}{5}-\frac{1}{2015}\right)}{4\left(\frac{1}{19}+\frac{1}{5}-\frac{1}{2015}\right)}=\frac{3}{4}\)
M=\(\frac{\frac{3}{19}+\frac{3}{5}-\frac{3}{2015}}{\frac{4}{19}-\frac{4}{2015}+\frac{4}{5}}=\frac{3.\left(\frac{1}{19}+\frac{1}{5}-\frac{1}{2015}\right)}{4.\left(\frac{1}{19}+\frac{1}{5}-\frac{1}{2015}\right)}\)=\(\frac{3}{4}\)