Tìm điều kiện xác định của biểu thức sau : \(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{x+1}{x-2y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{5x}{10}=\dfrac{x}{2}\)
b) \(\dfrac{4xy}{2y}=2x\left(y\ne0\right)\)
c) \(\dfrac{5x-5y}{3x-3y}=\dfrac{5}{3}\left(x\ne y\right)\)
d) \(\dfrac{x^2-y^2}{x+y}=x-y\left(đk:x\ne-y\right)\)
e) \(\dfrac{x^3-x^2+x-1}{x^2-1}=\dfrac{x^2+1}{x+1}\left(đk:x\ne\pm1\right)\)
f) \(\dfrac{x^2+4x+4}{2x+4}=\dfrac{x+2}{2}\left(đk:x\ne-2\right)\)
a: ĐKXĐ:\(x\notin\left\{2;0\right\}\)
b: \(C=\left(\dfrac{x\left(2-x\right)}{2\left(x^2+4\right)}-\dfrac{2x^2}{\left(x-2\right)\left(x^2+4\right)}\right)\cdot\left(\dfrac{2-x^2+x}{x^2}\right)\)
\(=\dfrac{-x^3+4x^2-4x-4x^2}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{-\left(x-2\right)\left(x+1\right)}{x^2}\)
\(=\dfrac{x\left(x^2+4\right)}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}=\dfrac{x+1}{2x}\)
c: Thay x=2017 vào C, ta được:
\(C=\dfrac{2017+1}{2\cdot2017}=\dfrac{1009}{2017}\)
a) ĐKXĐ:
\(x^2-1\ne0\Leftrightarrow x\ne\pm1\)
b) \(A=\dfrac{x^2-2x+1}{x^2-1}\)
\(A=\dfrac{x^2-2\cdot x\cdot1+1^2}{x^2-1^2}\)
\(A=\dfrac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}\)
\(A=\dfrac{x-1}{x+1}\)
c) Thay x = 3 vào A ta có:
\(A=\dfrac{3-1}{3+1}=\dfrac{2}{4}=\dfrac{1}{2}\)
a) ĐKXĐ:
\(9x^2-y^2\ne0\Leftrightarrow\left(3x\right)^2-y^2\ne0\Leftrightarrow\left(3x-y\right)\left(3x+y\right)\ne0\)
\(\Leftrightarrow3x\ne\pm y\)
b) \(B=\dfrac{6x-2y}{9x^2-y^2}\)
\(B=\dfrac{2\cdot3x-2y}{\left(3x\right)^2-y^2}\)
\(B=\dfrac{2\left(3x-y\right)}{\left(3x+y\right)\left(3x-y\right)}\)
\(B=\dfrac{2}{3x+y}\)
Thay x = 1 và \(y=\dfrac{1}{2}\) và B ta có:
\(B=\dfrac{2}{3\cdot1+\dfrac{1}{2}}=\dfrac{2}{3+\dfrac{1}{2}}=\dfrac{2}{\dfrac{7}{2}}=\dfrac{4}{7}\)
Lời giải:
a. ĐKXĐ: \(\left\{\begin{matrix} x-1\neq 0\\ x+1\neq 0\\ 1+\frac{x+1}{x-1}\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq 1\\ x\neq -1\\ x\neq 0\end{matrix}\right.\)
b. Tại $x=0$ thì biểu thức không xác định (theo kết quả phần a)
\(a,ĐK:x\ne\pm1;x\ne2\\ b,A=\dfrac{\dfrac{0+1}{0-1}-\dfrac{0-1}{0+1}}{1+\dfrac{0+1}{0-2}}=\dfrac{-1+1}{1-\dfrac{1}{2}}=0\\ c,A=0\Leftrightarrow\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=0\\ \Leftrightarrow\left(x+1\right)^2-\left(x-1\right)^2=0\\ \Leftrightarrow4x=0\Leftrightarrow x=0\left(tm\right)\)
\(a,ĐK:x\ne0;x\ne1;x\ne\pm2\\ b,A=\left[\dfrac{2+x}{2-x}-\dfrac{2-x}{2+x}+\dfrac{4x^2}{\left(2-x\right)\left(x+2\right)}\right]\cdot\dfrac{x\left(2-x\right)}{x-1}\\ A=\dfrac{x^2+4x+4-x^2+4x-4+4x^2}{\left(2-x\right)\left(x+2\right)}\cdot\dfrac{x\left(2-x\right)}{x-1}\\ A=\dfrac{4x\left(x+1\right)\cdot x}{\left(x+2\right)\left(x-1\right)}=\dfrac{4x^2}{x+2}\)
a) ĐKXĐ: \(x\ne1,x\ne-1,x\ne0\)
b) Do ĐKXĐ là \(x\ne0\) nên tại x=0 thì A vô nghiệm
a: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
Ta có: \(B=\dfrac{6-7x}{x^2-4}+\dfrac{3}{x+2}-\dfrac{2}{2-x}\)
\(=\dfrac{6-7x+3x-6+2x+4}{\left(x+2\right)\left(x-2\right)}\)
\(=\dfrac{-2x+4}{\left(x+2\right)\left(x-2\right)}\)
\(=-\dfrac{2}{x+2}\)
\(a,ĐK:x\ne\pm1\\ b,B=\dfrac{x^2+x-x^2-1}{2\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{2\left(x-1\right)\left(x+1\right)}=\dfrac{1}{2\left(x+1\right)}\\ c,B=-\dfrac{1}{2}\Leftrightarrow2\left(x+1\right)=-2\Leftrightarrow x+1=-1\Leftrightarrow x=-2\left(tm\right)\)
ĐKXĐ: \(x\ne0;y\ne0\)
\(ĐK:x\ne2y;x\ne0;y\ne0\)