cho A là tập hợp các số nguyên x mà -11/3<x<22/11. khẳng định -4 ∈ A là đúng hay sai?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2. Để A có giá trị nguyên => 11 chia hết 2n - 3
=> 2n-3 thuộc Ư(11) = { 1 ; -1 ; 11; -11}
=> 2n thuộc { 4 ; 2 ; 14 ; -8}
=> n thuộc { 2 ; 1 ; 7 ; -4}
Mà n là số tự nhiên => n = 1 ; 2; 7 (tm)
3.\(\frac{-3x-15}{-2x}=3\)=> -3x - 15 = -6x
=> -3x + 6x = 15
=> 3x = 15
=> x = 5 (tm)
4. \(\frac{2}{x+1}=\frac{x+1}{2}\)=> (x+1)2 = 4
=> (x + 1)2 = (+-2)2
=> x + 1 = +-2
=> x = 1 ; -3 (tm)
Vì tích đó có chứa các thừa số 20;30;40;50;60;70;80;90 nên tích 12.14.16...96.98 có chữ số tận cùng là 0
Vậy C có chữ số tận cùng là 0
a) A = { 6 }
Tập hợp A có 1 phần tử
b) B = { 0 }
Tập hợp B có 1 phần tử
c) C = { 0;1;2;3;4;5;6.... }
Tập hợp C có vô số phần tử
d) D = \(\varphi\)
Tập hợp D không có phần tử nào
k nha!
1) a) A = {18} có 1 phần tử
b) B = {0} có 1 phần tử
c) C = N có vô số phần tử
d) D = \(\phi\) không có phần tử nào
e) E = \(\phi\) không có phần tử nào
2) A = {0;1;2;...;9} , N = {0;1;2;;3;....9; 10; 11;....} => A \(\subset\) N
B = {0;2;4;6;8;10;12;...;...} => B \(\subset\) N
N * = {1;2;3;...} => N* \(\subset\) N
3) A = {4;5;6;...; 1999}
Từ 4 đến 1999 có 1999 - 4 + 1 = 1996 số => A có 1996 phần tử
B = {4; 6; 8 ...; 1998}
Từ 4 đến 1999 có 1996 số nên có 1996 : 2 = 998 số chẵn => B có 998 phần tử
C = {5;7;....; 1999} cũng có 998 phần tử
zaugjhfhgadghjgfdbsfshdfdxgdxkfgughhgvhghzfxdjkhygdhzkhlzfhndkfhufhjfkdlkgnzjifhLhsdjkhtlhj.ldg,lhfgkhfg
-4 =-12/3<-11/3 nên sai