3^3.3^4.3^5.3^6.3^7 tìm tổng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Tìm số đối.
- Số đối của \(\dfrac{1}{2}\) là \(-\dfrac{1}{2}\)
- Số đối của \(-\dfrac{3}{4}\) là \(\dfrac{3}{4}\)
- Số đối của \(\dfrac{7}{-12}\) là \(\dfrac{7}{12}\)
Bài 2: Thu gọn:
\(\dfrac{2^4.3^3-2^4.3^3}{2^5.3^4-2^6.3^3}=\dfrac{0}{2^5.3^4-2^6.3^3}=0\)
\(A=\frac{2^4.3^3+2^3.3^4}{2^5.3^3-2^4.3^2}\)
\(A=\frac{2^3.3^3\left(2+3\right)}{2^4.3^2\left(2.3-1\right)}\)
\(A=\frac{2^3.3^3.5}{2^4.3^2.5}\)
\(A=\frac{3}{2}\)
\(A=\frac{2^4.3^3+2^3.3^4}{2^5.3^3-2^4.3^2}\)
\(A=\frac{2^3.3^3\left(2+3\right)}{2^4.3^2\left(2.3-1\right)}\)
\(A=\frac{2^3.3^3.5}{2^4.3^2.5}\)
\(A=\frac{3}{2}\)
làm ơn giúp mình ,bạn nào làm nhanh đúng mình chọn cho nhanh nha mọi người
Ta có:
\(A=\dfrac{2^3.3^3.\left(2+3\right)}{2^4.3^3.\left(2-1\right)}=\dfrac{5}{2.1}=\dfrac{5}{2}\)
Giải:
Ta có: \(A=\dfrac{2^4.3^3+2^3.3^4}{2^5.3^3-2^4.3^3}.\)
\(=\dfrac{2^4.3^3+2^3.3^3.3}{2^5.3^3-2^4.3^3}.\)
\(=\dfrac{3^3\left(2^4+2^3.3\right)}{3^3\left(2^5-2^4\right)}.\)
\(=\dfrac{16+24}{32-16}\).
\(=\dfrac{40}{16}=\dfrac{5}{2}.\)
Vậy \(A=\dfrac{5}{2}.\)
CHÚC BN HỌC GIỎI!!! ^ - ^
Đừng quên bình luận nếu bài mik sai nhé!!!
Còn nếu bài mik đúng thì nhớ tick mik để mik lấy SP nha!!!
\(A=\dfrac{2^4.3^3+2^3.3^4}{2^5.3^4-2^6.3^3}=\dfrac{2^3.3^3.\left(2+3\right)}{2^5.3^3.\left(3-2\right)}=\dfrac{2^3.3^3.5}{2^5.3^3.1}\)
\(=\dfrac{5}{2^2}=\dfrac{5}{4}\)
\(A=\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}+\frac{16^3.3^{10}+120.6^9}{4^6.3^{12}+6^{12}}\)
\(=\frac{2^{12}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{2^{12}.3^6+\left(2^3\right)^4.3^5}-\frac{\left(2^4\right)^3.3^{10}+2^3.3.5.\left(2.3\right)^9}{\left(2^2\right)^6.3^{12}+\left(2.3\right)^{12}}\)
\(=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6-2^{12}.3^5}-\frac{2^{12}.3^{10}-2^3.3.5.2^9.3^9}{2^{12}.3^{12}+2^{12}.3^{12}}\)
\(=\frac{2^{12}.\left(3^5-3^4\right)}{2^{12}.\left(3^6-3^5\right)}-\frac{2^{12}.3^{10}-2^{12}.3^{10}.5}{2^{12}.3^{12}+2^{12}.3^{12}}\)
\(=\frac{3^5-3^4}{3^6-3^5}-\frac{2^{12}.3^{10}.\left(1-5\right)}{2^{13}.3^{12}}\)
\(=\frac{162}{486}-\frac{2^{12}.3^{10}.\left(-4\right)}{2^{13}.3^{10}.3^2}=\frac{1}{3}-\frac{2^{14}.3^{10}.\left(-1\right)}{2^{13}.3^{10}.9}\)
\(=\frac{1}{3}-\frac{2.1.\left(-1\right)}{1.1.9}=\frac{1}{3}-\frac{2}{9}=\frac{1}{9}\)
\(M=\frac{9^4.27^5.3^6.3^4}{3^8.81^4.234.8^2}=\frac{\left(3^2\right)^4.\left(3^3\right)^5.3^6.3^4}{3^8.\left(3^4\right)^4.3^5.\left(2^3\right)^2}\)
\(M=\frac{3^8.3^{15}.3^6.3^4}{3^{18}.3^{16}.3^5.2^6}=\frac{81}{64}\)
\(N=\frac{4^6.9^5.6^9.120}{8^4.3^{12}-6^{11}}=\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)
\(N=\frac{2^{12}.3^{10}.\left(1+5\right)}{2^{11}.3^{11}.\left(2.3-1\right)}=\frac{2.6}{3.5}\)
\(N=\frac{4}{5}\)