K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2021

Tham khảo:

Nhưng có vẻ không đúng yêu cầu đề lắm :<

undefined

undefined

undefined

10 tháng 12 2021

\(\left(x^2-y^2\right)^2=4xy+1\)

<=> \(\left(x^2+y^2\right)^2=4x^2y^2+4xy+1\)

<=> \(\left(x^2+y^2\right)^2=\left(2xy+1\right)^2\)

<=> \(x^2+y^2=2xy+1\)

<=> \(\left(x-y\right)^2=1\)

<=> \(\left[{}\begin{matrix}x=y+1\\x=y-1\end{matrix}\right.\) mà x,y là SNT <=> \(\left[{}\begin{matrix}\left(x;y\right)=\left(3;2\right)\\\left(x;y\right)=\left(2;3\right)\end{matrix}\right.\)

15 tháng 3 2023

wdwwđwdsswsw

2,Giải: 

♣ Ta thấy p = 2 thì 2p + 1 = 5 không thỏa = n³ 

♣ Nếu p > 2 => p lẻ (Do Số nguyên tố chẵn duy nhất là 2 ) 
Mặt khác : 2p + 1 là 1 số lẻ => n³ là một số lẻ => n là một số lẻ 

=> 2p + 1 = (2k + 1)³ ( với n = 2k + 1 ) 
<=> 2p + 1 = 8k³ + 12k² + 6k + 1 
<=> p = k(4k² + 6k + 3) 

=> p chia hết cho k 
=> k là ước số của số nguyên tố p. 

Do p là số nguyên tố nên k = 1 hoặc k = p 

♫ Khi k = 1 
=> p = (4.1² + 6.1 + 3) = 13 (nhận) 

♫ Khi k = p 
=> (4k² + 6k + 3) = (4p² + 6p + 3) = 1 
Do p > 2 => (4p² + 6p + 3) > 2 > 1 
=> không có giá trị p nào thỏa. 

Đáp số : p = 13

NV
20 tháng 8 2021

TH1: \(n\) chẵn \(\Rightarrow n=2k\) (với \(k\in N\)*)

\(p=\dfrac{2k\left(2k+1\right)}{2}-1=2k^2+k-1=\left(k+1\right)\left(2k-1\right)\)

Do \(k+1\ge2>1\) nên p nguyên tố khi và chỉ khi: \(\left\{{}\begin{matrix}2k-1=1\\k+1\text{ là số nguyên tố}\end{matrix}\right.\)

\(2k-1=1\Rightarrow k=1\)

Khi đó \(p=2\) (thỏa mãn)

TH2: \(n\) lẻ \(\Rightarrow n=2k+1\) (với \(k\in N\))

\(p=\dfrac{\left(2k+1\right)\left(2k+2\right)}{2}-1=\left(2k+1\right)\left(k+1\right)-1=2k^2+3k=k\left(2k+3\right)\)

Do \(2k+3\ge3>1\) nên p là nguyên tố khi và chỉ khi \(\left\{{}\begin{matrix}k=1\\2k+3\text{ là số nguyên tố}\end{matrix}\right.\)

Khi \(k=1\Rightarrow p=5\) là số nguyên tố (thỏa mãn)

Vậy \(p=\left\{2;5\right\}\)

20 tháng 8 2021

Em cảm ơn