Tim GTLN cua xyz(x+y)(y+z)(z+x) voi x,y,z \(\ge\)0 va x+y+z=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow\left(x+y+z\right)^2\ge\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2\ge3\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\right)=\dfrac{3\left(x+y+z\right)}{xyz}\Rightarrow x+y+z\ge\dfrac{3}{xyz}\)
\(x+y+z=\dfrac{x+y+z}{3}+\dfrac{2\left(x+y+z\right)}{3}\ge\dfrac{1}{3}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)+\dfrac{2}{3}.\dfrac{3}{xyz}\ge\dfrac{1}{3}\left(\dfrac{9}{x+y+z}\right)+\dfrac{2}{xyz}=\dfrac{3}{x+y+z}+\dfrac{2}{xyz}\left(đpcm\right)\)
\(dấu"="xảy\) \(ra\Leftrightarrow x=y=z=1\)
Áp dụng bất đẳng thức AM - GM:
\(A=xyz\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
\(\le\left(\frac{x+y+z}{3}\right)^3.\left(\frac{x+y+y+z+z+x}{3}\right)^3\)
\(=\left(\frac{1}{3}\right)^3.\left(\frac{2}{3}\right)^3=\frac{8}{729}\)
\(Max_A=\frac{8}{729}\Leftrightarrow x=y=z=\frac{1}{3}\)
\(x+z+y=1\Leftrightarrow\left(x+y+z\right)^2=1\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2zx\ge3\left(xy+yz+zx\right)=1\Rightarrow M_{max}=\frac{1}{3}.\text{Dâu "=" xay ra }\Leftrightarrow x=y=z=\frac{1}{3}\)
cô-si nhé bạn cần mk làm ko
ta có \(\sqrt[3]{xyz}\le\frac{x+y+z}{3}=\frac{1}{3}\Rightarrow xyz\le\frac{1}{27}\)
\(\sqrt[3]{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\le\frac{2\left(x+y+z\right)}{3}=\frac{2}{3}\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\le\frac{8}{27}\)
do đó xyz(x+y)(y+z)(z+x)\(\le\frac{1}{27}\cdot\frac{8}{27}=\frac{8}{729}\)
==>GTLN của biểu thức trên là \(\frac{8}{729}\)