tìm n thuộc tập hợp N* để p/s 5n+6 phần 8n+7 có thể rút gọn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta sẽ tìm ước chung của chúng
Gọi d là UCLN của 5n+6 và 8n+7
\(\Rightarrow\hept{\begin{cases}5n+6⋮d\\8n+7⋮d\end{cases}}\Rightarrow\hept{\begin{cases}40n+48⋮d\\40n+35⋮d\end{cases}}\)
\(\Rightarrow\left(40n+48\right)-\left(40n+35\right)⋮d\Rightarrow13⋮d\)
Vậy có thể rút gọn là +-1;+-13
Phân số 5n+6/8n+7 rút gọn được cho a
=>a là ƯC(5n+6;8n+7)
Đặt ƯCLN(5n+6;8n+7)=d
=>5n+6 chia hết cho d và 8n+7 chia hết cho d
=>(5n+6)-(8n+7) chia hết cho d
=>(40n+48)-(40n+35) chia hết cho d
=>13 chia hết cho d
=>d ϵ Ư ( 13 ) ( Ư C L N )
=>a = 1 hoặc 13
phân số 5n+6/8n+7 rút gọn được cho a
=>a là ƯCLN﴾5n+6;8n+7﴿
Đặt ƯCLN﴾5n+6;8n+7﴿=d
=>5n+6 chia hết cho d và 8n+7 chia hết cho d
=>﴾5n+6﴿‐﴾8n+7﴿ chia hết cho d
=>﴾40n+48﴿‐﴾40n+35﴿ chia hết cho d
=>13 chia hết cho d
=>d là ƯCLN nên d=13
=>a \(\in\) {1;13}