6) Trong mặt phẳng tọa độ Oxy cho đường thẳng (d): y = - 2/3 x và các điểm A(3;-1),B(-6;4),C( 3/4 ; -1/2 ) Chứng minh rằng ba điểm A, B, C thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
b: Tọa độ giao điểm của (d1) và (d2) là:
\(\left\{{}\begin{matrix}x+2=-x+4\\y=x+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x=2\\y=x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1+2=3\end{matrix}\right.\)
Thay x=1 và y=3 vào (d3), ta được:
\(1\cdot m+m=3\)
=>2m=3
=>\(m=\dfrac{3}{2}\)
Vì (d)//y=x+2 nên a-2=1
hay a=3
Vậy: (d): y=x+b
Thay x=-2 và y=-1 vào (d), ta được:
b-2=-1
hay b=1
a:
b: PTHĐGĐ là:
-x^2+4x-3=0
=>x^2-4x+3=0
=>x=1;x=3
=>A(1;-1); B(3;-9)
c: \(AB=\sqrt{\left(3-1\right)^2+\left(-9+1\right)^2}=2\sqrt{17}\)
Thay x=0 vào y=x+2013, ta được:
y=0+2013=2013
Thay y=0 vào y=x+2013, ta được:
x+2013=0
hay x=-2013
đường thẳng d cắt trục ox \(\Rightarrow\) y = 0
thay y bằng 0 vào ta có
\(0=x+2013\)
\(\Leftrightarrow-x=2013\)
\(\Leftrightarrow x=-2013\)
vậy đường thẳng d cắt ox tại điểm có tọa độ ( -2013; 0)
đường thẳng d cắt trục oy \(\Rightarrow\) x = 0
\(y=0+2013\)
\(\Leftrightarrow y=2013\)
vậy đường thẳng d cắt oy tại điểm có tọa độ ( 0 ; 2013)
1) y= 2x-4
HD: y=ax+b
.... song song: a=2 và b≠-1
..... A(1;-2) => x=1 và y=-2 và Δ....
a+b=-2
Hay 2+b=-2 (thay a=2)
<=> b=-4
KL:................
2) Xét PT hoành độ giao điểm của (P) và (d)
x2=2(m-1)x-m+3 ⇔x2-2(m-1)x+m-3 =0 (1)
*) Δ'= (1-m)2-m+3= m2-3m+4=m2-2.\(\dfrac{3}{2}\)m+\(\dfrac{9}{4}\)+\(\dfrac{7}{4}\)=\(\left(m-\dfrac{3}{2}\right)^2+\dfrac{7}{4}>0\). Vậy PT (1) có 2 nghiệm phân biệt x1; x2.
*) Theo hệ thức Viet ta có:
S=x1+x2=2(m-1) và P=x1.x2=m-3
*) Ta có: \(M=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
Thay S và P vào M ta có:
\(M=\left[2\left(m-1\right)\right]^2-2.\left(m-3\right)=4m^2-10m+10\\ =\left(2m\right)^2-2.2m.\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{15}{4}=\left(2m-\dfrac{5}{2}\right)^2+\dfrac{15}{4}\)
Vì (...)2≥0 nên M= (...)2+\(\dfrac{15}{4}\)≥\(\dfrac{15}{4}\)
Vậy M nhỏ nhất khi M=\(\dfrac{15}{4}\) khi 2m-\(\dfrac{5}{2}\)=0
\(\overrightarrow{AB}=\left(-9;5\right)\)
\(\overrightarrow{AC}=\left(-\dfrac{9}{4};\dfrac{1}{2}\right)\)
Vì \(\overrightarrow{AB}=k\cdot\overrightarrow{AC}\) nên A,B,C thẳng hàng