K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2016

Nối A và E lại ta có tam giác BAE cân tại B (vì BE=BA). Ta có góc BAE + góc CAE = góc ABC 
=90 độ. Mặt khác góc CAE + góc AEK = góc EKA = 90 độ => góc BAE = góc AEK. Mà góc BAE = góc BEA (tam giác BAE cân tại B) => góc AEK = góc BEA. Xét tam giác vuông AHE và AKE bằng nhau theo trường hợp cạnh góc vuông (AE chung) góc nhọn kề (góc AEK = góc BEA) => AK = AH (đpcm)

29 tháng 2 2016

EGHJHGVBNMJHG

K NHE

a: Xét ΔBAD có BA=BD

nên ΔBAD cân tại B

hay \(\widehat{BAD}=\widehat{BDA}\)

b: Ta có: \(\widehat{CAD}+\widehat{BAD}=90^0\)

\(\widehat{HAD}+\widehat{BDA}=90^0\)

mà \(\widehat{BAD}=\widehat{BDA}\)

nên \(\widehat{CAD}=\widehat{HAD}\)

hay AD là tia phân giác của góc HAC

11 tháng 5 2022

undefined

c, Ta có: Góc CAD= góc HAD 

hay góc KAD= góc HAD

Xét △ AHD và △AKD có:

AD chung

Góc AHD= góc AKD= 90 độ

Góc KAD= góc HAD

=> △AHD= △AKD (cạnh huyền- góc nhọn)

=> AH= AK (2 cạnh tương ứng)

17 tháng 2 2017

A B C H E K

∆AKE vuông tại K => ∠AEK + ∠EAK = 900 => ∠EAK = 900 - ∠EAK (1)

∠BAE + ∠EAK = 900 => ∠BAE = 900 - ∠EAK (2)

Từ (1) ; (2) => ∠AEK = ∠BAE (3)

Vì AB = BE (gt) => ∆ ABE cân tại B => ∠BAE = ∠BEA (theo định lý) (4)

Từ (3) ; (4) => ∠AEK = ∠BEA (5)

Xét ∆AHE và ∆AKE có :

∠AHE = ∠AKE = 900 (gt)

Cạnh AE chung

∠AEK = ∠BEA ( theo (5) )

=> ∆AHE = ∆AKE (CH - GN)

=> AK = AH (cạnh T/Ư) 

Vậy AK = AH

18 tháng 3 2020

A B C H E K M O

kẻ EM _|_ AB 

xét tam giác EMB và tam giác AHB có : ^B chung

^EMB = ^AHB = 90

BE = BA (gt)

=> tam giác EMB = tam giác AHB(ch-gn)

=> AH = EM (đn)                (1)

EK _|_ AC (gt)

AB _|_ AC (gt)

=> EK // AB (đl)

=> ^KEA = ^EAM (slt)

xét tam giác AEK và tam giác EAM có : AE chung

^EKA = ^AME = 90

=> tam giác AEK = tam giác EAM (ch-gn)                        (2)

=> AK = EM và (1)

=> AK = AH     

tam giác EMB = tam giác AHB (cmt) => BM = BH (Đn)

BE = BA (Gt)

BH + HE = BE

BM + MA = BA

=> HE = MA

gọi EM cắt AH tại O; xét tam giác EOH và tam giác AOM có : ^EHO = ^AMO = 90

^OEH = ^OAM do tam giác EMB = tam giác AHB (cmt)

=> tam giác OEH = tam giác AOM (cgv-gnk)

=> EH = AM (Đn)

(2) => KE = AM

=> KE = EH