K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2016

Đặt  \(A=\left(n^2+n-1\right)-1\), ta có:

\(A=\left(n^2+n-1\right)-1=\left(n^2+n-1-1\right)\left(n^2+n-1+1\right)=\left(n^2+n-2\right)n\left(n+1\right)\)   \(\left(a\right)\)

Xét  \(B=n^2+n-2=\left(n^2-1\right)+n-1=\left(n-1\right)\left(n+1\right)+n-1=\left(n-1\right)\left(n+2\right)\)  \(\left(b\right)\)

Thay  \(\left(b\right)\)   vào  \(\left(a\right)\), khi đó  \(A=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

Vì  \(\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)  là tích  \(4\)  số tự nhiên liên tiếp nên  \(A\)   có chứa bội của  \(2,\)  \(3,\)  \(4\)  nên  \(A\)  là bội của  \(24\)

Do đó,  \(A\)  chia hết cho  \(24\)

Vậy,  \(\left(n^2+n-1\right)-1\)  chia hết cho  \(24\)  với  \(n\in N\)

23 tháng 2 2016

Bạn Phước Nguyễn ghi gì z mình đọc ko hiểu

20 tháng 7 2018

a) \(\left(n+6\right)^2-\left(n-6\right)^2\)

\(=\left[\left(n+6\right)-\left(n-6\right)\right]\left[\left(n+6\right)+\left(n-6\right)\right]\)

\(=\left(n+6-n+6\right)\left(n+6+n-6\right)\)

\(=12.2n\)

\(=24n\)

Vì 24n chia hết cho 24 với mọi n

=> (n + 6)2 - (n - 6)2 chia hết cho 24 với mọi n thuộc Z (Đpcm)

b) P/s: Bài này cậu thiếu điều kiện n lẻ nên mình thêm vào mới giải được nha.

\(n^2+4n+3\)

\(=n^2+n+3n+3\)

\(=n\left(n+1\right)+3\left(n+1\right)\)

\(=\left(n+3\right)\left(n+1\right)\)

Vì n là số lẻ nên n = 2k + 1 ( k thuộc Z )

Thay n = 2k + 1 vào ta được

\(\left(n+3\right)\left(n+1\right)\)

\(=\left(2k+1+3\right)\left(2k+1+1\right)\)

\(=\left(2k+4\right)\left(2k+2\right)\)

\(=2\left(k+2\right)2\left(k+1\right)\)

\(=4\left(k+2\right)\left(k+1\right)\)

Vì (k + 2)(k + 1) là tích của hai số liên tiếp

=> (k + 2)(k + 1) chia hết cho 2

=> 4(k + 2)(k + 1) chia hết cho 8

=> n2 + 4n + 3 chia hết cho 8 với mọi số nguyên n lẻ ( Đpcm )

c) \(\left(n+3\right)^2-\left(n-1\right)^2\)

\(=\left[\left(n+3\right)-\left(n-1\right)\right]\left[\left(n+3\right)+\left(n-1\right)\right]\)

\(=\left(n+3-n+1\right)\left(n+3+n-1\right)\)

\(=4\left(2n+2\right)\)

\(=4.2\left(n+1\right)\)

\(=8\left(n+1\right)\)

Vì 8(n + 1) chia hết cho 8 với mọi n

=> (n + 3)2 - (n - 1)2 chia hết cho 8 với mọi n ( Đpcm )

18 tháng 3 2016

xin lỗi qua rồi

16 tháng 11 2015

Tổng các chữ số của số 111...1 (n số 1 là: 1.n

=>tổng các chữ số của số A là: 8n+1n=n(8+10=9n chia hết cho 9

Vì toongr các chữ số của A chia hết cho 9 

nên A chia hết cho 9 (đpcm)

17 tháng 8 2021

\(323=17.19\)

+) \(20^n+16^n-3^n-1=\left(20^n-1\right)+\left(16^n-3^n\right)\)

\(20^n-1=20^n-1^n⋮\left(20-1\right)=19\)

\(16^n-3^n⋮\left(16+3\right)=19\) (vì n chẵn)

\(\Rightarrow20^n+16^n-3^n-1⋮19\) 

+) \(20^n+16^n-3^n-1=\left(20^n-3^n\right)+\left(16^n-1\right)\)

\(20^n-3^n⋮\left(20-3\right)=17\)

\(16^n-1=16^n-1^n⋮\left(16+1\right)=17\) (vì n chẵn)

\(\Rightarrow20^n+16^n-3^n-1⋮17\)

Mà \(\left(17,19\right)=1\)

\(\Rightarrow20^n+16^n-3^n-1⋮\left(17.19\right)=323\)

17 tháng 8 2021

thank you yeu