K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔBEM vuông tại E và ΔCFM vuông tại F có 

MB=MC

\(\widehat{BME}=\widehat{CMF}\)

Do đó: ΔBEM=ΔCFM

5 tháng 2 2021

xét tam giác vuông BEC có EM là đường trung tuyến ứng với cạnh huyền 

suy ra EM = \(\frac{1}{2}\)BC        (1)

xét tam giác vuông CFB có FM là đường trung tuyến ứng với cạnh huyền 

suy ra FM = \(\frac{1}{2}\)BC        (2)

từ (1) và (2) suy ra M là trung điểm EF

mà M là trung điểm của BC

từ 2 điều đó suy ra BECF là hình bình hành 

suy ra BE = CF

16 tháng 11 2016

Ta có hình vẽ:

x A B C M E F

Δ CFM có: CFM + FMC + MCF = 180o

Δ EMB có: EMB + MBE + BEM = 180o

Mà CFM = MEB = 90o

FMC = BME (đối đỉnh) nên MCF = MBE

Xét Δ MCF và Δ MBE có:

MCF = MBE (cmt)

CM = BM (gt)

FMC = EMB (đối đỉnh)

Do đó, Δ MCF = Δ MBE (c.g.c)

=> CF = BE (2 cạnh tương ứng)

15 tháng 11 2017

g-c-g mà bạn

29 tháng 11 2014

Xét 2 TG vuông BME và CMF, ta có:

BM=CM(M là tđiểm BC); BME=CMF(2 góc đđ)

=>TG BME=TG CMF(cạnh huyền-góc nhọn)

=>BE=CF(2 cạnh tương ứng)

20 tháng 11 2017


Xét 2 TG vuông BME và CMF, ta có:
BM=CM(M là tđiểm BC); BME=CMF(2 góc đđ)
=>TG BME=TG CMF(cạnh huyền-góc nhọn)
=>BE=CF(2 cạnh tương ứng)

16 tháng 7 2017

Hai tam giác vuông BME, CMF có:

BM=MC(gt)

=(đối đỉnh)

 Nên ∆BME=∆CMF(cạnh huyền- góc nhọn).

Suy ra BE=CF.

16 tháng 7 2017

Vì tia Ax đi qua trung điểm M của BC => AM là đường trung tuyến của tam giác của tam giác ABC và BM = MC.

BE II CF vì 2 đường thẳng này cùng vuông góc với tia Ax(đl 1 bài từ vuông góc tới song song)

Xét tam giác BME và tam giác CMF có :

            Góc EBM = Góc MCF(so le trong)

            BM = MC.

            BME = CMF(2 góc đối đỉnh)

       => 2 tam giác này bằng nhau( g.c.g)

        => BE = CF(2 cạnh tương ứng)

26 tháng 8 2017

Giải bài 40 trang 124 Toán 7 Tập 1 | Giải bài tập Toán 7Giải bài 40 trang 124 Toán 7 Tập 1 | Giải bài tập Toán 7

Hai tam giác vuông BME và CMF có

Giải bài 40 trang 124 Toán 7 Tập 1 | Giải bài tập Toán 7

⇒ ΔBME = ΔCMF (cạnh huyền – góc nhọn)

⇒ BE = CF (hai cạnh tương ứng).

* Chú ý: Các em có thể suy nghĩ tại sao cần điều kiện AB ≠ AC ???

25 tháng 3 2018

19 tháng 1 2022

câu  sai nha bạn người ta bảo điều kiện của tam giác abc chứ ko phải thay canh BE với CE nha

22 tháng 11 2017

A B C M E F x

Xét \(\Delta BEM\) và \(\Delta CFM\) có:

\(\widehat{E}=\widehat{F}=90^o\)

MB = MC (gt)

\(\widehat{BME}=\widehat{CMF}\) (đối đỉnh)

Do đó \(\Delta BEM=\Delta CFM\) (cạnh huyền - góc nhọn)

=> BE = CF (2 cạnh t/ứ)

22 tháng 11 2017

A B C x M E F

Xét \(\Delta BEM\)và \(\Delta CFM\)

\(\widehat{E}=\widehat{F}=90^{ }\)độ

\(MB=MC\)( gt )

\(\widehat{BME}=CMF\)( đối đỉnh )

\(\Rightarrow\)\(\Delta BEM=\Delta CFM\)( g - c - g )

\(\Rightarrow\)\(BE=CF\)( 2 cạnh tương ứng bằng nhau )

14 tháng 12 2018

Lời giải:

Giải bài 40 trang 124 Toán 7 Tập 1 | Giải bài tập Toán 7Giải bài 40 trang 124 Toán 7 Tập 1 | Giải bài tập Toán 7

Hai tam giác vuông BME và CMF có

Giải bài 40 trang 124 Toán 7 Tập 1 | Giải bài tập Toán 7

⇒ ΔBME = ΔCMF (cạnh huyền – góc nhọn)

⇒ BE = CF (hai cạnh tương ứng).

Kiến thức áp dụng

+ Nếu cạnh huyền và một góc nhọn của tam giác vuông này bằng cạnh huyền và một góc nhọn của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.

Giải bài 38 trang 124 Toán 7 Tập 1 | Giải bài tập Toán 7

      ΔABC vuông tại A và ΔDEF vuông tại D có:

      BC = EF

      ∠B = ∠E

      ⇒ΔABC = ΔDEF