Tìm cặp số tự nhiên (x0;y0) thõa mãn (2x+1)(y-5)=12 sao cho x0+y0 lớn nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ đề bài suy ra:\(\frac{a,b}{a+b}=\frac{1}{2}\)
\(\Rightarrow a,b.2=a+b\)
\(\Rightarrow2a+0,b.2=a+b\)
\(\Rightarrow2a-a=b-0,2.b\)
\(\Rightarrow a=b\left(1-0,2\right)\)
\(\Rightarrow a=\frac{4}{5}b\)
\(\Rightarrow\frac{a}{b}=\frac{4}{5}\)
\(\Rightarrow a=4,b=5\)
minh ko biet xin loi ban nha!
minh ko biet xin loi ban nha!
minh ko biet xin loi ban nha!
minh ko biet xin loi ban nha!
mk k biet xn loi ban nha!
mk k biet xn loi ban nha!
mk k biet xn loi ban nha!
mk k biet xn loi ban nha!
a, Tìm cặp số tự nhiên x,y biết (x-2) .(y + 7) =17
b,Tìm số tự nhiên n để ( 3n+16) chia hết cho (n+4)
ta có y+7 là số tự nhiên lớn hơn 7 và là ước của 17
thế nên \(\hept{\begin{cases}y+7=17\\x-2=1\end{cases}\Leftrightarrow\hept{\begin{cases}y=10\\x=3\end{cases}}}\)
b. ta có : \(3n+14=3\times\left(n+4\right)+2\) chia hết cho n+4 khi 2 chia hết cho n+4
mà n là số tự nhiên nên n+4 > 3 thế nên không tồn tại số tự nhiên thỏa mãn
a, 17x3y chia hết cho 15 => 17x3y chia hết cho 5
TH1: y=0 => Các số chia hết 15: 17130, 17430, 17730 => x=1 hoặc x=4 hoặc x=7
TH2: y=5 => Các số chia hết cho 15: 17235, 17535, 17835 => x=2 hoặc x=5 hoặc x=8
Vậy: Các cặp số (x;y) thoả mãn: (x;y)= {(1;0); (4;0); (7;0); (2;5); (5;5); (8;5)}
34x5y chia hết cho 36 => 34x5y là số chẵn và chia hết cho 3, chia hết cho 9
TH1: y=0 => Các số chia hết cho 36: Không có số thoả
TH2: y=2 => Các số chia hết cho 36: 34452 => x=4
TH3: y=4 => Các số chia hết cho 36: Không có số thoả
TH4: y=6 => Các số chia hết cho 36: 34056; 34956 => x=0 hoặc x=9
TH5: y=8 => Các số chia hết cho 36: Không có số thoả
=> Các số chia hết cho 36 tìm được: 34452; 34056 và 34956
Vậy: (x;y)={(4;2); (0;6); (9;6)}
Để \(\overline{x73y}\) chia hết cho 4 thì \(\overline{3y}\) phải chia hết cho 4
Mà: \(\overline{3y}\) ⋮ 4 Khi \(y\in\left\{2;6\right\}\)
\(1\le x\le9\)
Để \(\overline{x73y}\) chia hết cho 5 khi \(y\in\left\{0;5\right\}\)
\(1\le x\le9\)
Lời giải:
$x^2+55=4y^2$
$4y^2-x^2=55$
$(2y-x)(2y+x)=55$
Vì $x,y$ là số tự nhiên nên $2y+x, 2y-x$ là số nguyên và $2y+x>0$.
Mà $(2y-x)(2y+x)=55>0$ nên $2y-x>0$
Kết hợp với $2y+x\geq 2y-x$ ta có các TH sau:
TH1: $2y-x=1; 2y+x=55\Rightarrow y=14; x=27$
TH2: $2y-x=5; 2y+x=11\Rightarrow y=4; x=3$
Lời giải:
$x^2+55=4y^2$
$\Leftrightarrow 55=4y^2-x^2=(2y-x)(2y+x)$
Do $x,y$ là stn nên $2y+x$ là stn.
$\Rightarrow 2y+x>0$. Mà $(2y+x)(2y-x)=55>0$ nên $2y-x>0$.
Vậy $2y+x> 2y-x>0$.
Khi đó ta có các TH sau:
TH1: $2y-x=1, 2y+x=55\Rightarrow y=14; x=27$ (tm)
TH2: $2y-x=5; 2y+x=11\Rightarrow y=4; x=3$ (tm)
2x chẵn,1 lẻ nên 2x+1 lẻ . Ta có bảng sau :
Ta thấy x0+y0 lớn nhất là 17 nên (x0;y0) = (0;17) thỏa mãn (2x+1)(y-5) = 12 với x0+y0 lớn nhất.