Môt thửa đất có chu vi là 56 m. Nếu giảm chiều rộng 2m và tăng chiều dài lên 4m thi diện tích tăng lên 8m2 Tính chiều dài và chiều rộng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều rộng của thửa đất là x (m) (x > 2)
Nửa chu vi của thửa đất là: 56:2 = 28(m)
Chiều dài của thửa đất là 28 – x (m)
Diện tích của thửa đất là x(28 – x) (m2)
Khi tăng chiều dài lên 4m, giảm chiều rộng đi 2m ta có diện tích là
(x – 2)(28 – x + 4) = (x – 2)(32 – x) ( m 2 )
Khi đó diện tích tăng thêm 8 m 2 nên ta có phương trình.
x(28 – x) + 8 = (x – 2)(32 – x))
⇔ 28 x – x 2 + 8 = 34 x – x 2 – 64
⇔ 6x = 72 ⇔ x = 12 (tmđk)
Vậy chiều rộng của thửa đất là 12m, chiều dài thửa đất là 28 – 12 = 16m.
gọi chiều rộng =x, chiều dài =y, ta có:
2(x+y)=50=> x+y=25
chiều rộng giảm 2 :x-2
chiều dài tăng 4:y+4
(x-2)(y+4)=xy+8<=>xy+4x-2y-8=xy+8<=>4x-2y=16
Ta có hệ
x+y=25
4x-2y=16
giải hệ này được x=11;y=14
nửa chu vi hình chữ nhật : 56/2=28cm
gọi x là chiều rộng của hình chữ nhật
chiều dài HCN:28-x(m)
chiều rộng sau khi giảm:x-2(m)
chiều dài sau khi tăng: 28-x+4=32-x(m)
theo đề bài ta có phương trình:
x.(28-x)=8-(x-2)(32-x)
<=>28x-x2=72-34x+x2
<=>62x-2x2-72=0
<=>x=1,21(m)
chiều dài : 28-1,21=26,79(m)
Nếu đúng thì T I C K cho mình nhé
Thống nhất đơn vị đo là m nhá -.-
Nửa chu vi miếng đất : 56 : 2 = 28m
Gọi chiều dài miếng đất là x ( m , \(x\inℕ^∗,x< 28\))
=> Chiều rộng miếng đất = 28 - x ( m )
Giảm chiều rộng 2m và tăng chiều dài 4m
=>\(\hept{\begin{cases}\text{ Chiều rộng mới = 28 - x - 2 = 26 - x ( m )}\\\text{Chiều dài mới = x + 4 ( m )}\end{cases}}\)
Diện tích ban đầu = x( 28 - x ) ( m2 )
Diện tích sau khi thay đổi = ( x + 4 )( 26 - x ) ( m2 )
Khi đó diện tích tăng thêm 8m2
=> Ta có phương trình : x( 28 - x ) + 8 = ( x + 4 )( 26 - x )
<=> 28x - x2 + 8 = 22x - x2 + 104
<=> 28x - x2 - 22x + x2 = 104 - 8
<=> 6x = 96
<=> x = 16 ( tmđk )
Vậy chiều dài miếng đất là 16m
chiều rộng miếng đất = 28 - 16 = 12m
nửa chu vi hình chữ nhật là;132,5/2=66,25
gọi chiều dài ban đầu là a. ta suy ra được chiều rộng là 66,25-a
theo bài ra nếu giảm chiều dài 5 mét và tăng chiều rộng 2m thì diện tích k đổi
suy ra (a-5)*(66.25+2-a)=a*(66,25-a)
giải ra ta được a=48,75
vậy diện tích thửa ruộng là;48,75*(66.25-48,750)=853,125 m2
2/Gọi chiều dài,rộng lần lượt là a;b (m;a,b>0)
Từ đề bài,suy ra a + b = 28 m
Suy ra a = 28 - b.
Suy ra diện tích là b(28-b)
Theo đề bài,ta có phương trình: \(\left(b-2\right)\left(28-b+4\right)=b\left(28-b\right)+8\)
\(\Leftrightarrow\left(b-2\right)\left(32-b\right)=-b^2+28b+8\)
\(\Leftrightarrow-b^2+34b-64=-b^2+28b+8\)
\(\Leftrightarrow34b-64=28b+8\)
\(\Leftrightarrow6b-72=0\Leftrightarrow b=12\)
Suy ra chiều dài là: 28 - b = 28 - 12 = 16
Vậy ...
#)Giải :
Gọi chiều dài thửa ruộng là a (m)
chiều rộng thửa ruộng là b (m)
=> Diện tích thửa ruộng là a.b (m2)
=> Chu vi hình chữ nhật là (a+b)2 = 56 => a + b = 28 (*)
Nếu giảm chiều rộng 2m và tăng chiều dài 4m thì diện tích tăng thêm 8m2
=> (b - 2)(a + 4) = ab + 8
=> ab + 4b - 2a - 8 = ab + 8
=> 4b - 2a = 16
=> 2b - a = 8
=> a = 2b - 8
Thay vào (*) ta được :
2b - 8 + b = 28
=> 3b = 36 => b = 12
Vậy chiều rộng hình chữ nhật là 12m
=> Chiều dài hình chữ nhật là : 28 - 12 = 16 (m)
Nửa chu vi của thửa ruộng là:
56:2=28(m)
Theo đề bài ta có nếu giảm chiều rộng 2 m và tăng chiều dài 4m thì diện tích tăng thêm 8 mét vuông thì có nghĩa là chiều rộng giữ nguyên chỉ tăng chiều dai lên 2 mét thôi
Vậy thì Chiều rộng của thửa ruộng đó là:
8:2=4(m)
Chiều dài của thửa ruộng đó là:
28-4=24(m)
Đáp số:CD:24m
CR:4 m
Chúc bn học tốt
nửa chu vi: 100/2 = 50 m
Gọi chiều rộng của mảnh vườn là x(m)(x>0)
=>chiều dài mảnh vườn là 50-x(m)
Diện tích mảnh vườn ban đầu là x(50-x)
chiều rộng khi tăng là x+3(m)
chiều dài khi giảm là 50-x-4=46-x(m)
Diện tích mới của mảnh vườn là:(x+3).(46-x)( m 2 )
Vì diện tích mới của mảnh vườn giảm 2m vuông nên ta có pt: (x+3)(46-x)=x(50-x)-2
Giải pt trên ta được x=20(TMĐK)
Vậy diện tích mảnh vườn là :20(50-20)=600( m 2 )
Gọi chiều rộng,chiều dài của thửa ruộng ban đầu lần lượt là x,y(m,0<x<y)
Nửa chu vi thửa ruộng là: 100:2=50(m)
=>x+y=50(1)
Diện tích của thửa ruộng ban đầu là :xy(m2)
Theo bài ra:
Chiều rộng thửa ruộng sau khi tăng thêm là: x+3(m)
Chiều dài thửa ruộng sau khi giảm là: y-4(m)
Diện tích vườn giảm 2m2
=> (x+3)(y-4)=xy-2(2)
Từ (1) và (2) ta có hpt:
\(\left\{{}\begin{matrix}x+y=50\\\left(x+3\right)\left(y-4\right)=xy-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=50\\xy-4x+3y-12=xy-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=50\\-4x+3y=xy-2-xy+12\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=50\\-4x+3y=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+3y=150\\-4x+3y=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7x=140\\x+y=50\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=20\\y=30\end{matrix}\right.\)(TMĐK)
Vậy chiều dài ban đầu của thửa ruộng là 30m
chiều rộng ban đầu của thửa ruộng là 20m
chiều dài: a; chiều rộng: b; nửa chu vi =a+b=28
theo đề bài, ta có phương trình (a+4)(b-2)=ab.8 ......... giải đi nha