Tìm số tự nhiên n sao cho:
1!+2!+3!+...+n! là một số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. tìm a là số tự nhiên để 17a+8 là số chính phương
Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)
\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)
\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)
với n = 1 thì n! = 1 = 12 là số chính phương
với n = 2 thì 1!+2! = 3 không là số chính phương
với n = 3 thì 1!+2!+3! = 1+1.2+1.2.3=9 là số chính phương
với n \(\ge\)4 ta có 1! + 2! + 3! + 4! = 1 + 1.2 + 1.2.3 + 1.2.3.4 = 33 còn 5! ; 6! ; ... ; n! đều có tận cùng là 0 do đó 1! + 2! + 3! + .... + n! có tận cùng là 3 nên nó k phải số chính phương
vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1 ; n = 3
với n 1 thì n! = 1 = 1\(^2\)là số chính phương
với n = 2 thì 1! + 2! = 3 không là số chính phương
với n = 3 thì 1! +2! +3! = 1+1.2 +1.2.3 =9 là số chính phương
với n \(>\)4 ta có 1! +2! +3! +4! = 1 +1.2 + 1.2.3 +1.2.3.4 = 33 còn 5! ; 6!; ....; n! đều có tận cùng là 0 do đó 1! +2! +3!+ .... +
n! có tận cùng là 3 nên nó không phải số chính phương
vậy có 2 số tự nhiên n thỏa mãn đề bài là n =1 ; n=3
Với \(n\ge5\):
\(1!+2!+3!+4!+5!+...+n!\equiv\left(1!+2!+3!+4!\right)\left(mod10\right)\equiv3\left(mod10\right)\)
Vì \(k!=1.2.3.....k=\left(2.5\right).1.3.4.6.....k\)(Với \(k\ge5\))
mà số chính phương không thể có tận cùng là \(3\)nên loại.
Tính trực tiếp với các trường hợp \(n=1,2,3,4\)ta được \(n=1\)và \(n=3\)thỏa mãn.
Với n = 1 thì 1! = 1 = 1² là số chính phương .
Với n = 2 thì 1! + 2! = 3 không là số chính phương
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương .
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.
Với n = 1 thì 1! = 1 = 1² là số chính phương .
Với n = 2 thì 1! + 2! = 3 không là số chính phương
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương .
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.
Với n = 1 thì 1! = 1 = 1² là số chính phương .
Với n = 2 thì 1! + 2! = 3 không là số chính phương
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương .
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.
Tích nh mấy bạn trong nhóm VRCT
Với n = 1 thì 1! = 1 = 1² là số chính phương .
Với n = 2 thì 1! + 2! = 3 không là số chính phương
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương .
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.
Tích nha mấy bạn trong nhóm VRCT
Gọi A(n) = 1 + 2
Với n = 1 => A1 = 1 = 1 = là một số chính phương
=>n = 1 (TM)
Với n = 2 => A2 = 1 = 1 + 2 =3 ko là một số chính phương
=>n = 2 (KTM)
Với n = 3 => A3 = =1 + 2 + 6 = 9 = là một số chính phương
=>n = 3 (TM)
Với n = 4 => A4 = 1 = 1 + 2 + 6 + 24 =33 không là mọt số chính phương
Với n
Vì 51.2.3.4.5 =1.3.4.10 có chữ số tận cùng là 5
Nên n có chữ số tận cùng là 3
Mà một số chính phương có chữ số tận cùng là:0;1;4;5;6;9
=>n = 5(KTM)
Vậy n = 1 hoặc n = 3 thì 1 là một số chính phương
Gọi A(n) = 1 + 2
Với n = 1 => A1 = 1 = 1 = là một số chính phương
=>n = 1 (TM)
Với n = 2 => A2 = 1 = 1 + 2 =3 ko là một số chính phương
=>n = 2 (KTM)
Với n = 3 => A3 = =1 + 2 + 6 = 9 = là một số chính phương
=>n = 3 (TM)
Với n = 4 => A4 = 1 = 1 + 2 + 6 + 24 =33 không là mọt số chính phương
Với n
Vì 51.2.3.4.5 =1.3.4.10 có chữ số tận cùng là 5
Nên n có chữ số tận cùng là 3
Mà một số chính phương có chữ số tận cùng là:0;1;4;5;6;9
=>n = 5(KTM)
Vậy n = 1 hoặc n = 3 thì 1 là một số chính phương
với n=1 thì 1!=1=12 là số chính phương
với n=2 thì 1!+2! không là số chính phương
với n=3 thì 1!+2!+3! là số chính phương
Vậy n=1 hoặc n=3
Chúc bạn học tốt nha !!!