Bài 2. Tính 1 cách hợp lí
a, - (378 – 2982) + (78 – 2982)
b. 963 – ( - 165 + 963)
Bài 3. Tính giá trị của các biểu thức sau
a, (12 + x) – (51 – x) – x với x = 1
b, (25 – x) – (36 – x) + x với x = 8
c, (5 – x) + (26 + x) – 2x với x = 12.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5
a) A = -x³ + 6x² - 12x + 8
= -x³ + 3.(-x)².2 - 3.x.2² + 2³
= (-x + 2)³
= (2 - x)³
Thay x = -28 vào A ta được:
A = [2 - (-28)]³
= 30³
= 27000
b) B = 8x³ + 12x² + 6x + 1
= (2x)³ + 3.(2x)².1 + 3.2x.1² + 1³
= (2x + 1)³
Thay x = 1/2 vào B ta được:
B = (2.1/2 + 1)³
= 2³
= 8
Bài 6
a) 11³ - 1 = 11³ - 1³
= (11 - 1)(11² + 11.1 + 1²)
= 10.(121 + 11 + 1)
= 10.133
= 1330
b) Đặt B = x³ - y³ = (x - y)(x² + xy + y²)
= (x - y)(x² - 2xy + y² + 3xy)
= (x - y)[(x - y)² + 3xy]
Thay x - y = 6 và xy = 9 vào B ta được:
B = 6.(6² + 3.9)
= 6.(36 + 27)
= 6.63
= 378
a: \(A=2x^2-8x+1\)
\(=2\left(x^2-4x+\dfrac{1}{2}\right)\)
\(=2\left(x^2-4x+4-\dfrac{7}{2}\right)\)
\(=2\left(x-2\right)^2-7>=-7\)
Dấu = xảy ra khi x=2
b: \(B=\left(x-3\right)^2+\left(x-1\right)^2\)
\(=x^2-6x+9+x^2-2x+1\)
\(=2x^2-8x+10\)
\(=2x^2-8x+8+2\)
\(=2\left(x-2\right)^2+2>=2\)
Dấu = xảy ra khi x=2
a) \(A=27\cdot36+73\cdot99+27\cdot14-49\cdot73\)
\(A=27\cdot\left(36+14\right)+73\cdot\left(99-49\right)\)
\(A=27\cdot50+73\cdot50\)
\(A=50\cdot\left(27+73\right)\)
\(A=50\cdot100\)
\(A=5000\)
b) \(B=\left(4^5\cdot10\cdot5^6+25^5\cdot2^8\right):\left(2^8\cdot5^4+5^7\cdot2^5\right)\)
\(B=\dfrac{\left(2^2\right)^5\cdot2\cdot5\cdot5^6+\left(5^2\right)^5\cdot2^8}{2^8\cdot5^4+5^7\cdot2^5}\)
\(B=\dfrac{2^{11}\cdot5^7+5^{10}\cdot2^8}{2^8\cdot5^4+5^7\cdot2^5}\)
\(B-\dfrac{2^8\cdot5^7\cdot\left(2^3\cdot1+5^3\cdot1\right)}{2^5\cdot5^4\cdot\left(2^3\cdot1+5^3\cdot1\right)}\)
\(B=\dfrac{2^8\cdot5^7}{2^5\cdot5^4}\)
\(B=2^3\cdot5^3\)
\(B=10^3\)
\(B=1000\)
`@` `\text {Ans}`
`\downarrow`
`1,`
`a)`
`5 \times 72 \times 10 \times 2`
`= 5 \times 2 \times 10 \times 72`
`= 10 \times 10 \times 72`
`= 100 \times 72`
`= 7200`
`b)`
`40 \times 125`
`= 4 \times 10 \times 25 \times 5`
`= (5 \times 10) \times (4 \times 25)`
`= 50 \times 100`
`= 5000`
`c)`
`4 \times 2021 \times 25`
`= (4 \times 25) \times 2021`
`= 100 \times 2021`
`= 202100`
`d)`
`16 \times 6 \times 25`
`= 4 \times 4 \times 6 \times 25`
`= (4 \times 25) \times 4 \times 6`
`= 100 \times 24`
`= 2400`
`2,`
`a)`
`24 \times 57 + 43 \times 24`
`= 24 \times (57+43)`
`= 24 \times 100`
`= 2400`
`b)`
`12 \times 19 + 80 \times 12 +12`
`= 12 \times (19 + 80 + 1)`
`= 12 \times 100`
`= 1200`
`c)`
`(36 \times 15 \times 169) \div (5 \times 18 \times 13)`
`= 36 \times 15 \times 169 \div 5 \div 18 \div 13`
`= 6 \times 6 \times 3 \times 5 \times 13 \times 13 \div 5 \div 3 \times 6 \div 13`
`= (6 \div 6) \times (3 \div 3) \times (5 \div 5) \times (13 \div 13) \times 6 \times 13`
`= 6 \times 13`
`= 78`
`d)`
`(44 \times 52 \times 60) \div ( 11 \times 13 \times 15)`
`= 44 \times 52 \times 60 \div 11 \div 13 \div 15`
`= 4 \times 11 \times 13 \times 4 \times 15 \times 4 \div 11 \div 13 \div 15`
`= (11 \div 11) \times (13 \div 13) \times (15 \div 15) \times 4 \times 4 \times`
`= 4 \times 4 \times 4`
`= 64`
`3,`
`a)`
`x - 280 \div 35 = 5 \times 54`
`x - 8 = 270`
`x = 270 + 8`
`x = 278`
`b)`
`(x - 280) \div 35 = 54 \div 4`
`(x - 280) \div 35 = 13,5`
`x - 280 = 13,5 \times 35`
`x - 280 = 472,5`
`x = 472,5 + 280`
`x = 752,5`
`c)`
`(x - 128 + 20) \div 192 = 0`
`x - 128 + 20 = 0 \times 192`
`x - 128 + 20 = 0`
`x - 108 = 0`
`x = 0 + 108`
`x = 108`
`d)`
`4 \times (x + 200) = 460 + 85 \times 4`
`4 \times (x+200) = 460 + 340`
`4 \times (x+200) = 800`
`x + 200 = 800 \div 4`
`x + 200 = 200`
`x = 200 - 200`
`x = 0`
`4,`
`a)`
`7/12 - 5/12`
`= (7 - 5)/12`
`= 2/12`
`= 1/6`
`b)`
`8/11 + 19/11`
`= (8+19)/11`
`= 27/11`
`c)`
`3/8 + 5/12`
`= 9/24 + 10/24`
`= 19/24`
`d)`
`3/4 + 7/12`
`= 9/12 + 7/12`
`= 16/12`
`= 4/3`
`5,`
`a)`
`x - 6/7 = 5/2`
`x = 5/2 + 6/7`
`x = 47/14`
`b)`
`12/7 \div x + 2/3 = 7/5`
`12/7 \div x = 7/5 - 2/3`
`12/7 \div x = 11/15`
`x = 12/7 \div 11/15`
`x = 180/77`
`@` `\text {Kaizuu lv uuu}`
`5`
`a, -7/21 +(1+1/3)`
`=-7/21 + ( 3/3 + 1/3)`
`=-7/21+ 4/3`
`=-7/21+ 28/21`
`= 21/21`
`=1`
`b, 2/15 + ( 5/9 + (-6)/9)`
`= 2/15 + (-1/9)`
`= 1/45`
`c, (9-1/5+3/12) +(-3/4)`
`= ( 45/5-1/5 + 3/12)+(-3/4)`
`= ( 44/5 + 3/12)+(-3/4)`
`= 9,05 +(-0,75)`
`=8,3`
`6`
`x+7/8 =13/12`
`=>x= 13/12 -7/8`
`=>x=5/24`
`-------`
`-(-6)/12 -x=9/48`
`=> 6/12 -x=9/48`
`=>x= 6/12-9/48`
`=>x=5/16`
`---------`
`x+4/6 =5/25 -(-7)/15`
`=>x+4/6 =1/5 + 7/15`
`=> x+ 4/6=10/15`
`=>x=10/15 -4/6`
`=>x=0`
`----------`
`x+4/5 = 6/20 -(-7)/3`
`=>x+4/5 = 6/20 +7/3`
`=>x+4/5 = 79/30`
`=>x=79/30 -4/5`
`=>x= 79/30-24/30`
`=>x= 55/30`
`=>x= 11/6`
\(5)\)
\(A=\dfrac{-7}{21}+\left(1+\dfrac{1}{3}\right)\)
\(A=\dfrac{-7}{21}+\dfrac{4}{3}\)
\(A=\dfrac{-7}{21}+\dfrac{28}{21}\)
\(A=1\)
\(--------------\)
\(B=\dfrac{2}{15}+\left(\dfrac{5}{9}+\dfrac{-6}{9}\right)\)
\(B=\dfrac{2}{15}+\dfrac{-1}{9}\)
\(B=\dfrac{18}{135}+\dfrac{-15}{135}\)
\(B=\dfrac{1}{45}\)
\(------------\)
\(C=9-\dfrac{1}{5}+\dfrac{3}{12}+\dfrac{-3}{4}\)
\(C=\dfrac{44}{5}+\dfrac{3}{12}+\dfrac{-3}{4}\)
\(C=\dfrac{528}{60}+\dfrac{15}{60}+\dfrac{-3}{4}\)
\(C=\dfrac{181}{20}+\dfrac{-3}{4}\)
\(C=\dfrac{181}{20}+\dfrac{-15}{20}\)
\(C=\dfrac{83}{10}\)
\(6)\)
\(a)\) \(x+\dfrac{7}{8}=\dfrac{13}{12}\)
\(x=\dfrac{13}{12}-\dfrac{7}{8}\)
\(x=\dfrac{104}{96}-\dfrac{84}{96}\)
\(x=\dfrac{5}{24}\)
\(b)\) \(\dfrac{-6}{12}-x=\dfrac{9}{48}\)
\(\dfrac{-1}{2}-x=\dfrac{3}{16}\)
\(x=\dfrac{-1}{2}-\dfrac{3}{16}\)
\(x=\dfrac{-8}{16}-\dfrac{3}{16}\)
\(x=\dfrac{-11}{16}\)
\(c)\) \(x+\dfrac{4}{6}=\dfrac{5}{25}-\left(-\dfrac{7}{15}\right)\)
\(x+\dfrac{4}{6}=\dfrac{5}{25}+\dfrac{7}{15}\)
\(x+\dfrac{4}{6}=\dfrac{75}{375}+\dfrac{105}{375}\)
\(x+\dfrac{4}{6}=\dfrac{12}{25}\)
\(x=\dfrac{12}{25}-\dfrac{4}{6}\)
\(x=\dfrac{72}{150}-\dfrac{100}{150}\)
\(x=\dfrac{-14}{75}\)
\(d)\) \(x+\dfrac{4}{5}=\dfrac{6}{20}-\left(-\dfrac{7}{3}\right)\)
\(x+\dfrac{4}{5}=\dfrac{6}{20}+\dfrac{7}{3}\)
\(x+\dfrac{4}{5}=\dfrac{18}{60}+\dfrac{140}{60}\)
\(x+\dfrac{4}{5}=\dfrac{79}{30}\)
\(x=\dfrac{79}{30}-\dfrac{4}{5}\)
\(x=\dfrac{79}{30}-\dfrac{24}{30}\)
\(x=\dfrac{11}{6}\)