K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2016

Ta có 

abcdeg=ab.10000+cd.100+eg

=9999.ab+99.cd+ab+cd+eg

=(9999.ab+99.cd)+(ab+cd+eg)

 Vì 9999.ab+99.cd=11.909.ab+9.11.cd=11(909ab+9cd) chia hết cho 11

ab+cd+eg chia hết cho 11( Theo đề)

=>abcdeg chia hết cho 11

21 tháng 2 2016

abcdeg=10000.ab+100.cd+eg

=9999.ab+99.cd+( ab+cd+eg)

Ta có 9999.ab chia hết cho 11

99.cd cũng vậy

Biểu thức trong ngoặc cũng thế

Vậy.........

a. Vì abcdeg chia hết cho 11 ( giả thiết b ) => abcdeg chia hết cho 11

b. Vì ab+cd+eg chia hết cho 11 ( giả thiết đầu bài ) => ab+cd+eg chia hết cho 11

19 tháng 4 2021

Ta có: abcdeg=10000ab+100+cd+eg

                      =(ab+cd+eg)(10000+101)

                              theo bài ra ta có ab+cd+eg chia hết cho 11=>(ab+cd+eg)(10000+101) chia hết cho 11 hay abcdeg chia hết cho 11(đpcm) 

                   Vậy với ab+cd+eg chia hết cho 11 thì abcdeg cũng chia hết cho 11

                           

abcdeg = ab . 10000 + cd . 100 + eg

ab . 9999 + 1 . ab + cd . 99 + cd + eg 

ab . 11 . 909 + cd . 11 . 9 + ( ab + cd + eg )

= 11 . ( ab + 909 + cd . 9 ) + ( ab + cd + eg )

Vì 11 . ( ab . 909 + cd . 9 ) chia hết cho 11

            ab + cd + eg chia hết cho 11

Nên abcdeg chia hết cho 11

Vậy nếu ab + cd + eg chia hết cho 11 thì abcdeg cũng chia hết cho 11

5 tháng 1 2017

dấu hiệu chia hết cho 11: một số chia hết cho 11 khi và chỉ khi :tổng các chữ số hàng chẵn-tổng các chữ số hàng lẻ chia hết cho 11

theo giả thiết:/ab+/cd+/eg = 10a + b + 10c + d + 10e + g = 11(a+c+e) + (b+d+g) - (a+c+e) chia hết cho 11

suy ra: (b+d+g) - (a+c+e) chia hết cho 11

suy ra : /abcdeg chia hết cho 11

19 tháng 7 2015

 abcdeg = 10000.ab + 100.cd + eg = 9999.ab + 99.cd + (ab + cd + eg)

Vì 9999.ab chia hết cho 11, 99.cd chia hết cho 11 và ab + cd + eg chia hết cho 11

=> abcdeg chia hết cho 11 (đpcm)

11 tháng 1 2018

ab+cd+eg chia hết cho 11

Mà 9999ab = 99.11.ab chia hết cho 11 và 99cd = 9.11.cd chia hết cho 11

=> 9999ab+99cd+ab+cd+eg chia hết cho 11

=> 10000ab+100cd+eg chia hết cho 11

=> ab0000+cd00+eg chia hết cho 11

=> abcdeg chia hết cho 11

=> ĐPCM

Tk mk nha

11 tháng 1 2018

Ta có: \(\overline{abcdeg}=10000\overline{ab}+100\overline{cd}+\overline{eg}=9999\overline{ab}+99\overline{cd}+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\)

Mà \(999\overline{ab}⋮11;99\overline{cd}⋮11;\left(\overline{ab}+\overline{cd}+\overline{eg}\right)⋮11\)

\(\Rightarrow9999\overline{ab}+99\overline{cd}+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)⋮11\)

Vậy...

AH
Akai Haruma
Giáo viên
29 tháng 2 2024

Lời giải:

$\overline{abcdeg}=\overline{ab}\times 10000+\overline{cd}\times 100+\overline{eg}$

$=(\overline{ab}+\overline{cd}+\overline{eg})+9999\overline{ab}+99\overline{cd}$

$=(\overline{ab}+\overline{cd}+\overline{eg})+11(909\overline{ab}+9\overline{cd})\vdots 11$ do:

$(\overline{ab}+\overline{cd}+\overline{eg})\vdots 11$ và $11(909\overline{ab}+9\overline{cd})\vdots 11$

8 tháng 1 2023

TK :

Theo tính chất chia hết của một tổng:

(ab + cd + eg) chia hết cho 11 (giả thiết),

⇒ ab hoặc cd hoặc eg chia hết cho 11

⇒ abcdeg chia hết cho 11 (tính chất a ⋮ b, thì ac ⋮ b)

Theo tính chất chia hết cho 11:

abcdeg = ab.10000 + cd.100 + eg

abcdeg = 9999.ab + 99.cd + ab + cd + eg

abcdeg = 9999ab + 99cd + (ab + dc + eg)

Mà 9999ab ⋮ 11, 99cd ⋮ 11, (ab + cd + eg) ⋮ 11

⇒ abcdeg ⋮ 11

2 tháng 4 2017

Ta có

abcdeg = ab.10000+cd.100+eg

              =9999.ab​​+ab+99.cd+cd+eg

              =(9999.ab+99.cd)+(ab+cd+eg)

Vì 9999.ab+99.cd chia hết cho 11, ab+cd+eg chia hết cho 11vậy ababcdeg chia hết cho 11

1 tháng 3 2018

Ta có : abcdeg = ab10000 + cd100 + eg 

= ( ab + cd + eg) + ( ab9999 + cd99 + eg)

= (ab + cd + eg ) + 11( ab909 + cd9 +eg ) chia hết cho 11

=> abcdeg chia hết cho 11