(𝑥−3)^2−𝑥^2=−15 tìm x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(x\in\left\{25;30;35\right\}\)
b: \(x\in\left\{24;32;40;48;56;64\right\}\)
c: \(x\in\left\{3;4;6\right\}\)
a) 2x + 15 = 45
2x = 45 - 15
2x = 30
x = 30 : 2
x = 15 (nhận)
Vậy x = 15
b) 120 - 2.(x + 3) = 22.52
120 - 2.(x + 3) = 1144
2.(x + 3) = 120 - 1144
2.(x + 3) = - 1024
x + 3 = -1024 : 2
x + 3 = -512
x = - 512 - 3
x = -515 (loại)
Vậy không tìm được x thỏa mãn x là số tự nhiên
c) 11 ⋮ (x - 2)
⇒ x - 2 ∈ Ư(11) = {-11; -1; 1; 11}
⇒ x ∈ {-9; 1; 3; 13}
Do x là số tự nhiên
⇒ x ∈ {1; 3; 13}
d) Do 12 ⋮ x và 18 ⋮ x nên x ∈ ƯC(12; 18)
12 = 2².3
18 = 2.3²
ƯCLN(12; 18) = 2.3 = 6
⇒ x ∈ ƯC(12; 18) = {1; ; 3; 6}
a) 2+3𝑥=−15−19
3x= -15 - 19 -2
3x = -36
x= -12
b) 2𝑥−5=−17+12
2x = -17 + 12 + 5
2x = 0
x = 0
c) 10−𝑥−5=−5−7−11
-x = -5 - 7 - 11 - 10 + 5
-x = -28
x = 28
d) |𝑥|−3=0
|x|= 3
x = \(\pm\)3
e) (7−|𝑥|).(2𝑥−4)=0
th1 : ( 7 - | x| ) = 0
|x|= 7
x=\(\pm\)7
th2: ( 2x-4) = 0
2x = 4
x= 2
f) −10−(𝑥−5)+(3−𝑥)=−8
-10 - x + 5 + 3 - x = -8
-10 + 5 + 3 + 8 = 2x
2x= 6
x = 3
g) 10+3(𝑥−1)=10+6𝑥
10 + 3x - 3 = 10 + 6x
3x - 6x = 10 - 10 + 3
-3x = 3
x= -1
h) (𝑥+1)(𝑥−2)=0
th1: x+1= 0
x = -1
x-2=0
x=2
hok tốt!!!
1) Rút gọn biểu thức M: M = (2√x)/(√x - 3) - (x + 9√x)/(x - 9) = (2√x(x - 9) - (x + 9√x)(√x - 3))/(√x - 3)(x - 9) = (2x√x - 18√x - x√x + 9x + 9x - 27√x - 9√x + 27 )/(√x - 3)(x - 9) = (2x√x - 36√x + 27x)/(√x - 3)(x - 9) = (x(2√x - 36) + 27x) /(√x - 3)(x - 9) = (x(2√x - 36 + 27))/(√x - 3)(x - 9) = (x(2√x - 9))/( √x - 3)(x - 9) Do đó biểu thức M Rút gọn là: M = (x(2√x - 9))/(√x - 3)(x - 9) 2) Tìm các giá trị của x ă mãn M/N.(căn x + 3) = 3x - 5: Ta có phương trình: M/N.(căn x + 3) = 3x - 5 Đặt căn x + 3 = t, t >= 0, ta có x = t^2 - 3 Thay x = t^2 - 3 vào biểu thức M/N, ta có: M/N = [(t^2 - 3)(2√(t^2 - 3) - 9)]/[(t^2 - 3 + 5)t] = [(2(t^2 - 3) √(t^2 - 3) - 9(t^2 - 3))]/(t^3 + 2t - 3t - 6) = [2(t^2 - 3)√(t^2 - 3) - 9(t^2 - 3)]/(t(t - 1)(t + 2)) Đặt u = t^2 - 3, ta có: M/N = [2u√u - 9u]/((u + 3)(u + 2)) = [u(2√u - 9)]/((u + 3)(u + 2)) Đặt v = √u, ta có: M/N = [(v^ 2 + 3)(2v - 9)]/[((v^2 + 3)^2 - 3)(v^2 + 2)] = [(2v^3 - 18v + 6v - 54)]/[ ( (v^4 + 6v^2 + 9) - 3)(v^2 + 2)] = (2v^3 - 12v - 54)/(v^4 + 6v^2 + 6v^2 - 9v^2 + 18) = (2v^3 - 12v - 54)/(v^4 + 12v^2 + 18) Ta cần tìm các giá trị của v đối xứng phương trình M/N = 3x - 5: (2v^3 - 12v - 54)/(v^4 + 12v^2 + 18) = 3(t^2 - 3) - 5 (2v ^3 - 12v - 54)/(v^4 + 12v^2 + 18) = 3t^ 2 - 14 (2v^3 - 12v - 54) = (v^4 + 12v^2 + 18)(3t^2 - 14) Tuy nhiên, từ t = √(t^2 - 3), ta có v = √u = √(t^2 - 3) => (2(v^2)^3 - 12(v^2) - 54) = ((v^2)^4 + 12(v^2)^2 + 18) (3(v^2 - 3) - 14) => 2v^
\(\Leftrightarrow x^2-4x+4-x^2+9=6\)
=>-4x=-7
hay x=7/4
\(a,\left(x+2\right)^2+\left(x+3\right)^2-2\left(x-2\right)\left(x-3\right)=19\\ \Leftrightarrow x^2+4x+4+x^2+6x+9-2x^2+10x-12=19\\ \Leftrightarrow20x=20\\ \Leftrightarrow x=1\\ b,\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2-5\right)=15\\ \Leftrightarrow x^3+8-x^3+5x=15\\ \Leftrightarrow5x=7\\ \Leftrightarrow x=\dfrac{7}{5}\\ c,\left(x-1\right)^3+\left(2-x\right)\left(4+2x+x^2\right)+3x\left(x+2\right)=17\\ \Leftrightarrow x^3-3x^2+3x+1+8-x^3+3x^2+6x=17\\ \Leftrightarrow9x=8\\ \Leftrightarrow x=\dfrac{8}{9}\)
a. (x + 2)2 + (x + 3)2 - 2(x - 2)(x - 3) = 19
<=> (x2 + 4x + 4) + (x2 + 6x + 9) - (2x + 4)(x - 3) = 19
<=> x2 + 4x + 4 + x2 + 6x + 9 - 2x2 + 6x - 4x + 12 = 19
<=> x2 + x2 - 2x2 + 4x + 6x + 6x - 4x + 9 + 4 + 12 - 19 = 0
<=> 12x + 6 = 0
<=> 6(2x + 1) = 0
<=> 2x + 1 = 0
<=> 2x = -1
<=> x = \(\dfrac{-1}{2}\)
a) \(\sqrt{x}=3\left(x\ge0\right)\Leftrightarrow x=9\)
b) \(\sqrt{x}=\sqrt{5}\left(x\ge0\right)\Leftrightarrow x=5\)
c) \(\sqrt{x}=0\left(x\ge0\right)\Leftrightarrow x=0\)
d) \(\sqrt{x}=-2\left(x\ge0\right)\Leftrightarrow x=\varnothing\)
e) \(\sqrt{x-2}=3\left(x\ge0\right)\Leftrightarrow x-2=9\Leftrightarrow x=11\)
g) \(\sqrt{2x-1}=5\left(x\ge0\right)\Leftrightarrow2x-1=25\Leftrightarrow2x=26\Leftrightarrow x=13\)
h) \(\sqrt{x-3}=0\left(x\ge0\right)\Leftrightarrow x-3=0\Leftrightarrow x=3\)
a: \(\sqrt{x}=3\)
nên x=9
b: \(\sqrt{x}=\sqrt{5}\)
nên x=5
c: \(\sqrt{x}=0\)
nên x=0
d: \(\sqrt{x}=-2\)
nên \(x\in\varnothing\)
e: \(\sqrt{x}-2=3\)
\(\Leftrightarrow\sqrt{x}=5\)
hay x=25
g: \(\sqrt{2x}-1=5\)
\(\Leftrightarrow2x=36\)
hay x=18
h: Ta có: \(\sqrt{x}-3=0\)
nên x=9
(𝑥−3)2−𝑥2=−15
x2-6x+9-x2=-15
(x2-x2)-6x+9=-15
-6x=-15-9
-6x=-24
x=-24:-6
x=4
Vậy x=4
\(\Leftrightarrow-6x=6\)
hay x=-1