a. Tính nhanh
\(A=\frac{1.5.6+2.10.12+4.20.24+9.45.54}{1.3.5+2.6.10+4.12.20+9.27.45}\)
b. Áp dụng tính tổng:
S=1.2+2.3+3.4+............+n(n+1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét trên tử
Ta có :
1.5.6 + 2.10.12 + 4.20.24 + 9.45.54
= 1.5.6 + \(^{2^3}\). 1.5.6 + \(^{4^3}\).1.5.6 + \(^{9^3}\).1.5.6
= 1.5.6 ( 2^3 + 4^3 + 9^3 )
Xét mẫu
Ta có :
1.3.5 + 2.6.10 + 4.12.20 + 9.27.45
= 1.3.5 + 2^3 .1.3.5 + 4^3 . 1.3.5 + 9^3 .1.3.5
= 1.3.5 ( 2^3 + 4^3 + 9^3 )
Ta có
A = \(\frac{1.5.6.\left(2^3+4^3+9^3\right)}{1.3.5.\left(2^3+4^3+9^3\right)}\)= 2
b) Ta có :
k(k+1)(k+2)-(k-1)k(k+1) = k(k + 1) (k + 2 - k + 1 ) = k( k + 1 ) . 3 = 3k( k + 1 )
Ta có :
S = 1.2 + 2.3 + 3.4 + ... + n(n + 1 )
\(\Rightarrow\)3S = 1.2.3 + 2.3.3 + 3.4.3 + ... + n(n + 1) . 3
3S = 1.2.3 + 2.3(4 - 1) + 3.4(5 - 2) + ... + n(n + 1)[(n + 2) - (n - 1)]
3S = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + 3.4.5 - 2.3.4 + ... + n(n + 1)(n + 2) - (n - 1)n(n + 1)
3S = n(n + 1)(n + 2)
S = \(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
\(\frac{1\cdot5\cdot6+2\cdot10\cdot12+4\cdot20\cdot24+9\cdot45\cdot54}{1\cdot3\cdot5+2\cdot6\cdot10+4\cdot12\cdot20+9\cdot27\cdot45}=\frac{1\cdot5\cdot6\cdot\left(1+2+4+9\right)}{1\cdot3\cdot5\cdot\left(1+2+4+9\right)}=2\)
\(A=\frac{1.5.6+2^3.1.5.6+4^3.1.5.6+9^3.1.5.6}{1.3.5+2^3.1.3.5+4^3.1.3.5+9^3.1.3.5}=\frac{1.5.6.\left(1+2^3+4^3+9^3\right)}{1.3.5.\left(1+2^3+4^3+9^3\right)}=2\)
\(\frac{1.5.6+2.10.12+4.20.24+9.45.54}{1.3.5+2.6.10+4.12.20+9.27.45}\)=\(\frac{1.5.6+\left(1.5.6\right)2+\left(1.5.6\right)4+\left(1.5.6\right)9}{1.3.5+\left(1.3.5\right)2+\left(1.3.5\right)4+\left(1.3.5\right)9}\)
=\(\frac{\left(1.5.6\right)\left(1+2+4+9\right)}{\left(1.3.5\right)+\left(1+2+4+9\right)}=\frac{1.5.6}{1.3.5}=\frac{6}{3}=2\)
\(\frac{1.5.6+2.10.12+4.20.24+9.45.54}{1.3.5+2.6.10+4.12.20+9.27.45}=\frac{1.5.6+\left(1.5.6\right)2+\left(1.5.6\right)4+\left(1.5.6\right)9}{1.3.5+\left(1.3.5\right)2+\left(1.3.5\right)4+\left(1.3.5\right)9}=\)
\(\frac{\left(1.5.6\right)\left(1+2+4+9\right)}{\left(1.3.5\right)\left(1+2+4+9\right)}=\frac{1.5.6}{1.3.5}=\frac{6}{3}=2\)
\(A=\frac{1\cdot5\cdot6+2\cdot10\cdot12+4\cdot20\cdot24+9\cdot45\cdot54}{1\cdot3\cdot5+2\cdot6\cdot10+4\cdot12\cdot20+9\cdot27\cdot45}\)
\(A=\frac{1\cdot5\cdot6\cdot\left(1+2+4+9\right)}{1\cdot3\cdot5\cdot\left(1+2+4+9\right)}\)
\(A=\frac{1\cdot5\cdot6}{1\cdot3\cdot5}\)
\(A=2\)