K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét tứ giác EFCB có

M là trung điểm của EC

M là trung điểm của FB

Do đó: EFCB là hình bình hành

Suy ra: EF//BC

Xét ΔABC có

D là trung điểm của AB

E là trung điểm của AC

Do đó: DE là đường trung bình của ΔABC

Suy ra: DE//BC

Ta có: DE//BC

EF//BC

mà DE và EF có điểm chung là E

nên D,E,F thẳng hàng

 

a: Xét ΔMDB và ΔMEF có

MD=ME

góc DMB=góc EMF

MB=MF

=>ΔMDB=ΔMEF

b: ΔMDB=ΔMEF

=>DB=EF

=>EC=EF

=>ΔECF cân tại E

24 tháng 12 2017

c, Xét \(\Delta AME\)và \(\Delta CMB\)có:

AM=CM(M là trung điểm của AC)

\(\widehat{AME}=\widehat{CMB}\)(2góc đối đỉnh)

ME=MB(gt)

\(\Rightarrow\)\(\Delta AME=\Delta CMB\)(c-g-c)

\(\Rightarrow\)AE=BC(2 cạnh tương ứng)(dpcm)

Do\(\Delta AME=\Delta CMB\)(c-g-c)

\(\Rightarrow\)\(\widehat{AEM}=\widehat{CBM}\)(2 góc tương ứng)

Mà 2 góc ở vị trí so le trong suy ra AE song song BC(dpcm)

a,Xét \(\Delta AMB\)\(\Delta CME\)

AM=CM(M là tđ của AC)

\(\widehat{AMB}=\widehat{CME}\)(2 góc đối đỉnh)

MB=ME(gt)

\(\Rightarrow\) \(\Delta AMB\)=\(\Delta CME\)(c-g-c)

\(\Rightarrow\)AB=CE(dpcm)

b, câu b tương tự câu a nhé

d, bạn chứng minh \(\Delta ANF=\Delta BNC\)(c-g-c)

\(\Rightarrow\)AF=BC (1)

lại có AE=BC(theo c) (2)

Từ (1), (2) \(\Rightarrow\)AE=AF

\(\Rightarrow\)A là trung điểm của EF(dpcm)

2 tháng 12 2021

\(a,\) Vì M là trung điểm AC và BD nên ABCD là hbh

Do đó \(AD=BC;AD\text{//}BC\left(1\right)\)

Vì N là trung điểm AB và CE nên ACBE là hbh

Do đó \(AE=BC;AE\text{//}BC\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow AD=AE\)

\(b,\left(1\right)\left(2\right)\Rightarrow AD\text{ trùng }AE\Rightarrow A,D,E\text{ thẳng hàng}\)

2 tháng 12 2021

 "hbh" là gì vậy bạn

2 tháng 12 2021

Tham khảo

 

a) Xét △ADM△ADM và △CBM△CBM ta có :

MD = MB (gt)

ˆM1=ˆM2M1^=M2^ (2 góc đối đỉnh)

AM = CM (gt)

=> △ADM=△CBM△ADM=△CBM (c.g.c)

=> AD = BC (2 cạnh tương ứng) (1)

Xét △AEN△AEN và △BCN△BCN ta có :

AN = BN (gt)

ˆN1=ˆN2N1^=N2^ (2 góc đối đỉnh)

EN = CN (gt)

=> △AEN=△BCN△AEN=△BCN (c.g.c)

=> AE = BC (2 cạnh tương ứng) (2)

Từ (1) và (2) => AD = AE

b) Ta có : △ADM=△BCM△ADM=△BCM (CMT)

=> ˆADM=ˆBCMADM^=BCM^ (2 góc tương ứng)

Mà ˆADMADM^ và ˆBCMBCM^ là 2 góc so le trong

=>AD // BC (dấu hiệu nhận biết 2 đường thẳng song song) (3)

Ta có : △AEN=△BCN△AEN=△BCN (CMT)

=> ˆAEN=ˆBCNAEN^=BCN^ (2 góc tương ứng)

=> Mà ˆAENAEN^ và ˆBCNBCN^ là 2 góc so le trong

=> AE // BC (dấu hiệu nhận biết 2 đường thẳng song song) (4)

Từ (3) và (4) => A,D,EA,D,E thẳng hàng (theo tiên đề Ơ-clit)

a: Xét ΔMDB và ΔMEF có

MD=ME

góc DMB=góc EMF

MB=MF

=>ΔMDB=ΔMEF

b: ΔMDB=ΔMEF

=>DB=EF

=>EC=EF

=>ΔECF cân tại E

 

a: Xét ΔMDB và ΔMEF có

MD=ME

góc DMB=góc EMF

MB=MF

=>ΔMDB=ΔMEF

b: ΔMDB=ΔMEF

=>DB=EF

=>EC=EF

=>ΔECF cân tại E