Tìm n thuộc Z:4n-3 chia het cho 2-3n
giải giúp em nhé !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n+7 chia het n-2
suy ra (n-2)+9 chia het n-2
suy ra 9 chia het n-2
suy ra n-2 \(\in\) Ư(9)={1;3;9} nếu bạn chưa học số âm
suy ra n-2 \(\in\) Ư(9)={1;3;9;-1;-3;-9} nếu bạn học số âm rồi
n-2=1 n-2=3 n-2=9
n =1+2 n =3+2 n =9+2
n = 3 n =5 n =11 nếu bạn học số âm rồi thì làm tiếp theo cách này còn nếu chưa thì đến đây là hết
3n chia hết cho 5- 2n
=>2.3n chia hết cho 2.(5-2n)
=>6n chia hết cho 10-6n
=>6n-10+10 chia hết cho 10-6n
=>-(10-6n)+10 chia hết cho 10-6n
=>10 chia hết cho 10-6n
=>10-6n thuộc Ư(10)={1;-1;2;-2;5;-5;10;-10}
ta có bảng sau:
10-6n | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
n | 3/2(loại) | 11/6(loại) | 1(TM) | 2(TM) | 5/6(loại) | 15/6(loại) | 0(TM) | 10/3(loại) |
Vậy n={1;2;0}
4n + 3 chia het cho 2n+6
=>4n+12-9 chia hết cho 2n+6
=>2.(2n+6)-9 chia hết cho 2n+6
=>9 chia hết cho 2n+6
=>2n+6 thuộc Ư(9)={1;-1;3;-3;9;-9}
ta có bảng sau:
2n+6 | 1 | -1 | 3 | -3 | 9 | -9 |
n | -5/2(loại) | -7/2(loại) | -3/2(loại) | -9/2(loại) | 3/2(loại) | -15/2(loại) |
Vậy n=\(\phi\)
3n chia hết cho 5- 2n
=>2.3n chia hết cho 2.(5-2n)
=>6n chia hết cho 10-6n
=>6n-10+10 chia hết cho 10-6n
=>-(10-6n)+10 chia hết cho 10-6n
=>10 chia hết cho 10-6n
=>10-6n thuộc Ư(10)={1;-1;2;-2;5;-5;10;-10}
ta có bảng sau:
10-6n | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
n | 3/2(loại) | 11/6(loại) | 1(TM) | 2(TM) | 5/6(loại) | 15/6(loại) | 0(TM) | 10/3(loại) |
Vậy n={1;2;0}
4n + 3 chia het cho 2n+6
=>4n+12-9 chia hết cho 2n+6
=>2.(2n+6)-9 chia hết cho 2n+6
=>9 chia hết cho 2n+6
=>2n+6 thuộc Ư(9)={1;-1;3;-3;9;-9}
ta có bảng sau:
2n+6 | 1 | -1 | 3 | -3 | 9 | -9 |
n | -5/2(loại) | -7/2(loại) | -3/2(loại) | -9/2(loại) | 3/2(loại) | -15/2(loại) |
Vậy n=\(\phi\)
3.(4n-3) chia het cho 3n-2
12n-9 : het cho 3n-2
4.(3n-2)+1 : het cho 3n-2
1 : het cho3n-2
3n-2 thuoc uoc cua 1
de 4n -3 chia het cho 3n-2
<=> 4n -3 chia het cho 4n-1-2
<=> 4n-3 chia het cho 4n - 3 = 1
vay n thuoc Z de 4n-3=3n-2 va 4n-3:3n-2=1
\(n^3+4n+2=n^3+3n+n+2=n\left(n^2+3\right)+n+2⋮\left(n^2+3\right)\Leftrightarrow\left(n+2\right)⋮\left(n^2+3\right)\)
Với \(n=2\)ta thấy không thỏa mãn.
Với \(n\ne2\): suy ra \(\left(n-2\right)\left(n+2\right)=n^2-4=n^2+3-7⋮\left(n^2+3\right)\)
\(\Leftrightarrow7⋮\left(n^2+3\right)\)mà \(n\inℤ\)nên \(n^2+3=7\Leftrightarrow n=\pm2\)đối chiếu điều kiện suy ra \(n=-2\).
Thử lại \(n=-2\)thỏa mãn.
Ta có : \(2^{4n+1}+3=2^{4n+1}-2+5=2\left(2^{4n}-1\right)+5=2\left(16^n-1\right)+5\)
Ta thấy \(16^n-1⋮5\forall n\in Z\Rightarrow2\left(16^n-1\right)+5⋮5\forall n\in Z\)
Vậy \(2^{4n+1}+3⋮5\)