cho hình tròn tâm o bán kính R có đường kính AB dây CD vuông góc AB tại H gọi I,K lần lượt là chân các đg vuông góc kẻ từ H đến AC,BC
A/CM tg ACD cân , tứ giác ACOD là hình thoi
B/tính AC theo R khi H là trung điểm của OA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xet tam giac COA can tai O( OA= OC) co CI vua la duong cao vua la trung tuyen ung voi AO nen tam giac OAC deu. Suy ra goc COA bang 60do , suy ra so do cung CA bang 60do. Suy ra goc COB bang 180-60=120 suy ra so do cung CA bang 120. Co: HCA=1/2sd cungCA=60/2=30 (1)
Co goc CHB=1/2(sd cungCB- sd cungCA) =1/2(120-60)=1/2*60=30 (2)
Tu (1); (2) suy ra: tam giac ACH can tai A. Suy ra AC= AH (3)
Lai co: tam giac CAO deu nen CA= CO (4)
Tu (3);(4)suy ra CA=CO=AH⏩ tam giac CHO vuong tai C
➡CO vuong goc voi HC tai C
Vay HC la tiep tuyen
b). Tu giac ACOD la hinh thoi
Tu giac co 4 canh ( CA= CO=OD=DA) bang nhau
c).
a: Xét (O) có
OH là một phần đường kính
CD là dây
OH\(\perp\)CD tại H
Do đó: H là trung điểm của CD
Xét ΔACD có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔACD cân tại A