phân số 1/3; 21/28; 77/66; 50/100; 2 có mẫu số chung là 12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ở đây ta thấy quy luật như sau: Ta có nhóm 1: 1/1: 1+1=2 Nhóm 2: ½; 2/1: 2+1=3 .... Vậy 5 phân số tiếp theo thuộc nhóm 5 lần lượt là: 1/5; 2/4; 3/3; 4/2; 5/1 Phân số thứ 16/7 là phân số ở nhóm 22, đứng thứ 16, thì phân số thứ 16/7 là phân số thứ: (1+21)×21/2+16=247
Ở đây ta thấy quy luật như sau:
Ta có nhóm 1: 1/1: 1+1=2
Nhóm 2: ½; 2/1: 2+1=3
....
Vậy 5 phân số tiếp theo thuộc nhóm 5 lần lượt là: 1/5; 2/4; 3/3; 4/2; 5/1
Phân số thứ 16/7 là phân số ở nhóm 22, đứng thứ 16, thì phân số thứ 16/7 là phân số thứ:
(1+21)×21/2+16=247
Tổng của 3 phân số đó là:
\(\frac{13}{36}\times3=\frac{39}{36}\)
Tổng của 3 phân số khi phân số thứ nhất tăng lên 3 lần là:
\(\frac{25}{36}\times3=\frac{75}{36}\)
2 lần phân số thứ nhất là:
\(\frac{75}{36}-\frac{39}{36}=1\)
Phân số thứ nhất là:
\(1\div2=\frac{1}{2}\)
Tổng của phân số thứ hai và phân số thứ ba là:
\(\frac{39}{36}-\frac{1}{2}=\frac{7}{12}\)
Phân số thứ hai là:
\(\left(\frac{7}{12}+\frac{1}{12}\right)\div2=\frac{1}{3}\)
Phân số thứ ba là:
\(\frac{1}{3}-\frac{1}{12}=\frac{1}{4}\)
Đáp số: ..................
số thứ nhất là 1/2
số thứ hai là 1/3
số thứ ba là 1/4 nha bạn
Gọi p/s thứ nhất là \(\dfrac{1}{x}\), p/s thứ 2 là \(\dfrac{1}{y}\), p/s thứ 3 là \(\dfrac{1}{z}\)
Theo đề bài ta có : \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\) (1)
và \(\dfrac{1}{x}-\dfrac{1}{y}=\dfrac{1}{z}\); \(\dfrac{1}{x}+\dfrac{1}{y}=5\cdot\left(\dfrac{1}{z}\right)\).
Thay biểu thức \(\dfrac{1}{x}+\dfrac{1}{y}=5\cdot\left(\dfrac{1}{z}\right)\) trên vào (1) ta được :
\(5\cdot\left(\dfrac{1}{z}\right)+\dfrac{1}{z}=1\Rightarrow z=6\) Vậy phân số thứ ba là \(\dfrac{1}{6}\).
Ta có : \(\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{y}=\dfrac{1}{6}\\\dfrac{1}{x}+\dfrac{1}{y}=5\cdot\dfrac{1}{6}\end{matrix}\right.\left(Đề-bài\right)\)
Bài toán tổng hiệu \(\dfrac{1}{x}\) là số lớn, \(\dfrac{1}{y}\) là số bé (do \(\dfrac{1}{x}-\dfrac{1}{y}\) ra số dương).
Vậy \(\dfrac{1}{x}=\dfrac{\left(\dfrac{1}{6}+5\cdot\dfrac{1}{6}\right)}{2}=\dfrac{1}{2}\); \(\dfrac{1}{y}=5\cdot\dfrac{1}{6}-\dfrac{1}{2}=\dfrac{1}{3}\)
Vậy phân số thứ nhất là \(\dfrac{1}{2}\), phân số thứ hai là \(\dfrac{1}{3}\), phân số thứ ba là \(\dfrac{1}{6}\).