Cho (O) đường kinhsAB.Qua trung điểm E của đoạn OB kẻ 1 đường thẳng vuông góc với OB cắt (O) tại M và N.Kẻ dây MP // AB.Gọi I là điểm giữa của cung nhỏ PM.
a.Chứng minh AP = BN.
b.OI cắt PM tại K.Chứng minh rằng tứ giác OKME là hình chữ nhật.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thọ tested! h heeeee
\(\sqrt{2222}\)
\(\dfrac{1}{22}\)
Giải :
a) Xét (O) có PM // AB
⇒ 2 cung AP và BM bị chắn bởi 2 dây trên sẽ bằng nhau.
mà BM = BN ( △ BMN cân tại B vì có BE vừa là đ/c, đường trung tuyến △)
⇒ cung BM = cung BN
⇒ cung AP = cung BN
b) Xét (O) có OI đi qua điểm chính giữa của PM (gt)
⇒ OI vuông góc với dây PM tại K
⇒góc OKM = 90 độ.
Xét tứ giác OKME có 3 góc vuông : góc OKM = 90 độ (cmt),
góc MEO = 90 độ ( MN vuông góc với OB tại E
góc EMK = 90 độ ( vì PM//AB, AB vuông góc với MN ⇒ PM vuông góc với MN tại M )
⇒ OKME là hcn
c) Ta có : góc OPI = góc NOE ( vì 2 góc đông vị, MP//AB)
mà góc OPI + góc POI = 90 độ ( △POK vuông tại K )
⇒góc NOE + góc POI = 90 độ
⇒ góc NOE + góc POI + góc IOE = 90 + 90 = 180 độ
⇒ P,O,N thẳng hàng
- Xét △ PMN có KE đường TB ( K trđ PM, E trđ MN )
⇒ KE//PN
Câu 1 :
Xét ΔCHO vuông tại H , có : cos COH = \(\dfrac{OH}{OC }\)( tỉ số lượng giác )
⇔ cos COH = \(\dfrac{R/2}{R}\)=\(\dfrac{1}{2}\)=> \(\widehat{COH }\) = 60 độ
=> \(\widehat{BC }\) = \(\widehat{COH }\) = 60 độ
C/m tương tự => \(\widehat{BD }\) = 60 độ . Ta có \(\widehat{BC }\) + \(\widehat{BD }\) = 60 + 60 = 120 độ
còn lại bạn tự làm nốt nhá
góc ADB=1/2*180=90 độ
góc ANB=góc ADB=90 độ
Xét ΔEAB có
BD,AN,EC là đường cao
BD cắt EC tại F
=>F là trựctâm
góc ADF+góc ACF=180 độ
=>ADFC nội tiếp
góc EDF+góc ENF=180 độ
=>EDFN nội tiếp
góc CDF=góc CAF
góc NDF=góc ECB
mà góc CAF=góc ECB
nên góc CDF=góc NDF
=>DF là phân giác của góc NDC(1)
góc DNF=góc AEC
góc CNF=góc DBA
góc AEC=góc DBA
=>góc DNF=góc CNF
=>NF là phân giác của góc DNC(2)
Từ (1), (2) suy ra F là tâm đường tròn nội tiêp ΔCND
Gọi giao điểm của AK và MB là I; giao điểm của IF với AB là J.
Xét tam giác vuông ICA ta thấy DA = DC nên DA = DC = DI.
Lại có DB là trung trực của AF nên DA = DF. Vậy thì DA = DF = DI hay tam giác IFA vuông tại F, suy ra DB // IJ.
Vậy thì DB là đường trung bình tam giác AIJ hay B là trung điểm AJ.
Ta có KF // AJ nên áp dụng Ta let ta có:
\(\frac{KM}{AB}=\frac{IM}{IB}=\frac{MF}{BJ}\)
Do AB = BJ nên KM = MF.