K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HD
20 tháng 1 2021

Thọ tested! h heeeee

\(\sqrt{2222}\)

\(\dfrac{1}{22}\)

6 tháng 2 2021

Giải :

a) Xét (O) có PM // AB

⇒ 2 cung AP và BM bị chắn bởi 2 dây trên sẽ bằng nhau. 

mà BM = BN ( △ BMN cân tại B vì có BE vừa là đ/c, đường trung tuyến △)

⇒ cung BM = cung BN

⇒ cung AP = cung BN

b) Xét (O) có OI đi qua điểm chính giữa của PM (gt)

⇒ OI vuông góc với dây PM tại K

⇒góc OKM = 90 độ.

Xét tứ giác OKME có 3 góc vuông : góc OKM = 90 độ (cmt),

góc MEO = 90 độ ( MN vuông góc với OB tại E

 góc EMK = 90 độ ( vì PM//AB, AB vuông góc với MN ⇒ PM vuông góc với MN tại M )

⇒ OKME là hcn

c) Ta có : góc OPI = góc NOE  ( vì 2 góc đông vị, MP//AB)

mà góc OPI + góc POI = 90 độ ( △POK vuông tại K )

⇒góc NOE + góc POI = 90 độ

⇒ góc NOE + góc POI + góc IOE = 90 + 90 = 180 độ

⇒ P,O,N thẳng hàng

- Xét △ PMN có KE đường TB ( K trđ PM, E trđ MN )

⇒ KE//PN

 

15 tháng 1 2021

Câu 1 : 

Xét ΔCHO vuông tại H , có : cos COH = \(\dfrac{OH}{OC }\)( tỉ số lượng giác ) 

⇔ cos COH = \(\dfrac{R/2}{R}\)=\(\dfrac{1}{2}\)=> \(\widehat{COH }\) = 60 độ 

=> \(\widehat{BC }\) = \(\widehat{COH }\) = 60 độ 

C/m tương tự =>​ \(​​​​\widehat{BD }\) = 60 độ . Ta có \(\widehat{BC }\) + \(​​​​\widehat{BD }\)  = 60 + 60 = 120 độ 

còn lại bạn tự làm nốt nhá 

  

góc ADB=1/2*180=90 độ

góc ANB=góc ADB=90 độ

Xét ΔEAB có

BD,AN,EC là đường cao

BD cắt EC tại F

=>F là trựctâm

góc ADF+góc ACF=180 độ

=>ADFC nội tiếp

góc EDF+góc ENF=180 độ

=>EDFN nội tiếp

góc CDF=góc CAF

góc NDF=góc ECB

mà góc CAF=góc ECB

nên góc CDF=góc NDF

=>DF là phân giác của góc NDC(1)

góc DNF=góc AEC

góc CNF=góc DBA

góc AEC=góc DBA

=>góc DNF=góc CNF

=>NF là phân giác của góc DNC(2)

Từ (1), (2) suy ra F là tâm đường tròn nội tiêp ΔCND

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếpb) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.ANCâu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M...
Đọc tiếp

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.

a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp

b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN

Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.

a) C/m: MOCD là hình bình hành

b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.

Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).

a) C/m: MI là tiếp tuyến của (O)

b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.

0
20 tháng 12 2017

A B O C H D E F K M I J

Gọi giao điểm của AK và MB là I; giao điểm của IF với AB là J.

Xét tam giác vuông ICA ta thấy DA = DC nên DA = DC = DI.

Lại có DB là trung trực của AF nên DA = DF. Vậy thì DA = DF = DI hay tam giác IFA vuông tại F, suy ra DB // IJ.

Vậy thì DB là đường trung bình tam giác AIJ hay B là trung điểm AJ.

Ta có KF // AJ nên áp dụng Ta let ta có:

\(\frac{KM}{AB}=\frac{IM}{IB}=\frac{MF}{BJ}\)

Do AB = BJ nên KM = MF.