Cho tg ABC có M là trung điểm của BC. Từ A kẻ AH vuông góc với BC. Biết AH và AM chia Góc BAC thành 3 góc bằng nhau. Chứng minh:
a, Tg ABC vuông tại A
b, Tg AMC cân
c, Tg ABM đều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: Xét tứ giác BHDM có
A là trung điểm chung của BD và HM
=>BHDM là hình bình hành
=>BH//DM
ta có:BH//DM
H\(\in\)BC
Do đó: DM//BC
d: Ta có: ΔCBD cân tại C
mà CA là đường cao
nên CA là phân giác của góc BCD
Xét ΔCNA vuông tại N và ΔCHA vuông tại H có
CA chung
\(\widehat{NCA}=\widehat{HCA}\)
Do đó: ΔCNA=ΔCHA
=>NA=AH
mà AH=1/2HM
nên NA=1/2HM
Xét ΔNHM có
NA là đường trung tuyến
\(NA=\dfrac{1}{2}HM\)
Do đó: ΔNHM vuông tại N
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
DO đó: ΔAHB=ΔAHC
Suy ra: HB=HC
hay H là trung điểm của BC
b: Xét ΔMAD và ΔMBH có
\(\widehat{MAD}=\widehat{MBH}\)
MA=MB
\(\widehat{AMD}=\widehat{BMH}\)
Do đó:ΔMAD=ΔMBH
Suy ra: AD=BH
hay BH=2,5cm
Xét ΔABH vuông tại H có \(AB^2=AH^2+HB^2\)
hay AH=6(cm)
bạn có biết giải câu c) không ? Nếu giải được thì chỉ giúp mình với