K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2016

\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{18}+\frac{1}{20}\)

\(A=1,46\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a, Ta có: \(\dfrac{4}{2}=2;\dfrac{8}{4}=2;\dfrac{16}{8}=2;\dfrac{32}{16}=2;\dfrac{64}{32}=2\)

b, Ta thấy: 

i, Số sai bằng số liền trước nhân với 2.

ii, Số sau bằng số liền trước nhân với \(\dfrac{1}{2}\)

iii, Số sau bằng số liền trước nhân với -3.

Điểm giống nhau của các dãy số này là số sau bằng số liền trước nhân với một số không đổi.

25 tháng 8 2023

tham khảo.

loading...

29 tháng 3 2018

nhanh lên mình đang cần gấp

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Cấp số nhân có \({u_1} = 1,\;\;q = \;4\)

Số hạng tổng quát: \({u_n} = {4^{n - 1}}\)

Số hạng thứ 5: \({u_5} = {4^{5 - 1}} = 256\)

Số hạng thứ 100: \({u_{100}} = {4^{100 - 1}} =  {4^{99}}\).

b) Cấp số nhân có \({u_1} = 2,\;q =  - \frac{1}{4}\)

Số hạng tổng quát: \({u_n} = 2 \times {\left( { - \frac{1}{4}} \right)^{n - 1}}\)

Số hạng thứ 5: \({u_5} = 2 \times {\left( { - \frac{1}{4}} \right)^{5 - 1}} = \frac{1}{{128}}\)

Số hạng thứ 100: \({u_{100}} = 2 \times {\left( { - \frac{1}{4}} \right)^{100 - 1}} = \frac{ -1}{{2^{197}}}\)

15 tháng 7 2016

\(a.1\frac{1}{120}\)

nha bạn 

Nguyễn Anh Kim Hân
15 tháng 7 2016

\(a.1\frac{1}{120}\)

k mk nha Nguyễn Anh Kim Hân

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có: \({u_1} = 1,\;q = \frac{{\frac{1}{2}}}{1} = \frac{1}{2}\).

Suy ra công thức tổng quát của dãy số \({u_n} = {\left( {\frac{1}{2}} \right)^{n - 1}}\).

Chọn đáp án D.

5 tháng 7 2016

c.\(=3\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+..+\frac{2}{99.101}\right)\)

\(=3\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=3\left(1-\frac{1}{101}\right)\)

\(=\frac{300}{101}\)

5 tháng 7 2016

a.\(=4\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)

\(=4\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(=4\left(1-\frac{1}{100}\right)\)

\(=\frac{99}{25}\)