K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2022

refer

a)

ta có: AC=EC

ECA=60

=> tam giác AEC đều

b)

ta có tam giấcEC đều => EA=AC=EC

ABC=90-60=30

BAE=90-60=30

=> tam giác ABE cân tại E => BE=EA mà EA=AC=> BE=AC

c)

theo câu b, ta có tam giác ABE cân tại E=> __BE=EA

                                                                |__EBA=EAB

xét 2 tam giác vuông BEF và AEF cso:

EA=EB(cmt)

EBA=EAB(cmt)

=> tam giác BEF AEF(CH-GN)

=> FB=FA=> F là trung điểm của AB

d) ta có: tính chất trong 1 tam giác vuông cạnh đối diện góc 30 độ = nửa cạnh huyền

=> AC=1/2 BC=1/2 x6=3(cm)

AB2=BC2−AC2=62−32=36−9=25(cm)

20 tháng 3 2022

`Answer:`

undefined

a. Theo giả thiết: EI//AF

`=>\hat{EIB}=\hat{ACB}=\hat{ABC}=\hat{EBI}` (Do `\triangleABC` cân ở `A`)

`=>\triangleEBI` cân ở `E`

`=>EB=EI`

b. Theo giải thiết: BE=CF=>EI=CF`

Xét `\triangleOEI` và `\triangleOCF:`

`EI=CF`

`\hat{OEI}=\hat{OFC}` 

`\hat{OIE}=\hat{OCF}`

`=>\triangleOEI=\triangleOFC(g.c.g)`

`=>OE=OF`

c. Ta có: `KB⊥AB` và `KC⊥AC`

`=>KB^2=KA^2-AB^2=KA^2-AC^2=KC^2`

`=>KB=KC`

Mà `BE=CF`

`=>KE^2=KB^2+BE^2=KC^2+CF^2=KF^2`

`=>KE=KF`

`=>\triangleEKF` cân ở `K`

Mà theo phần b. `OE=OF=>O` là trung điểm `EF`

`=>OK⊥EF`

4 tháng 3 2016

giúp mình với

a: Xét ΔBAD và ΔBED có

BA=BE

góc ABD=góc EBD

BD chung

Do đó: ΔBAD=ΔBED

=>DA=DE

b: BA+AF=BF

BE+EC=BC

mà BA=BE và AF=EC

nên BF=BC

ΔBFC cân tại B

mà BD là phân giác

nên BD vuông góc FC

c: Xét ΔBFC có BA/AF=BE/EC
nên AE//CF

d: ΔBAD=ΔBED

=>góc BED=góc BAD=90 độ

Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

AF=EC

Do đó:ΔDAF=ΔDEC

=>góc ADF=góc EDC

=>góc ADF+góc ADE=180 độ

=>E,D,F thẳng hàng