Cho tam giác ABC vuông cân tại A . Trên BC lấy E, F sao cho BE=EF=FC. Từ E, F lần lượt kẻ EI ⊥ BC, EJ ⊥ BC, I ∈ AB, J ∈ AC.
a) Chứng minh BE=EI
b) Chứng minh EFJI là hình vuông
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
refer
a)
ta có: AC=EC
ECA=60
=> tam giác AEC đều
b)
ta có tam giấcEC đều => EA=AC=EC
ABC=90-60=30
BAE=90-60=30
=> tam giác ABE cân tại E => BE=EA mà EA=AC=> BE=AC
c)
theo câu b, ta có tam giác ABE cân tại E=> __BE=EA
|__EBA=EAB
xét 2 tam giác vuông BEF và AEF cso:
EA=EB(cmt)
EBA=EAB(cmt)
=> tam giác BEF AEF(CH-GN)
=> FB=FA=> F là trung điểm của AB
d) ta có: tính chất trong 1 tam giác vuông cạnh đối diện góc 30 độ = nửa cạnh huyền
=> AC=1/2 BC=1/2 x6=3(cm)
`Answer:`
a. Theo giả thiết: EI//AF
`=>\hat{EIB}=\hat{ACB}=\hat{ABC}=\hat{EBI}` (Do `\triangleABC` cân ở `A`)
`=>\triangleEBI` cân ở `E`
`=>EB=EI`
b. Theo giải thiết: BE=CF=>EI=CF`
Xét `\triangleOEI` và `\triangleOCF:`
`EI=CF`
`\hat{OEI}=\hat{OFC}`
`\hat{OIE}=\hat{OCF}`
`=>\triangleOEI=\triangleOFC(g.c.g)`
`=>OE=OF`
c. Ta có: `KB⊥AB` và `KC⊥AC`
`=>KB^2=KA^2-AB^2=KA^2-AC^2=KC^2`
`=>KB=KC`
Mà `BE=CF`
`=>KE^2=KB^2+BE^2=KC^2+CF^2=KF^2`
`=>KE=KF`
`=>\triangleEKF` cân ở `K`
Mà theo phần b. `OE=OF=>O` là trung điểm `EF`
`=>OK⊥EF`
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
Do đó: ΔBAD=ΔBED
=>DA=DE
b: BA+AF=BF
BE+EC=BC
mà BA=BE và AF=EC
nên BF=BC
ΔBFC cân tại B
mà BD là phân giác
nên BD vuông góc FC
c: Xét ΔBFC có BA/AF=BE/EC
nên AE//CF
d: ΔBAD=ΔBED
=>góc BED=góc BAD=90 độ
Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
AF=EC
Do đó:ΔDAF=ΔDEC
=>góc ADF=góc EDC
=>góc ADF+góc ADE=180 độ
=>E,D,F thẳng hàng