Cho phân số A =n+10:2n (với n khác 0)
a, viết A thành tổng của 2 phân số cùng mẫu
b,tìm A để A đạt giá trị lớn nhất.Tìm giá trị lớn nhất đó.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{n+10}{2n}\) có GTLN
<=> n + 10 có GTLN và 2n là số nguyên dương bé nhất
=> 2n = 2 (vì n là số tự nhiên)
=> n = 1
Khi đó \(A=\frac{1+10}{2.1}=\frac{11}{2}\)có GTLN <=> n = 1
a)có \(\frac{n+10}{2n}=\frac{n}{2n}
+\frac{10}{2n}=\frac{1}{2}+\frac{5}{n}\)
vậy 2 ps cần tìm la 1/2 và 5/n
b)
để A =1/2+5/n
để A đạt GTLN-->5/n lớn nhất (n<0)
mà vì 2n là mẫu thì nếu n lớn thì ps sẽ nhỏ hơn-->n bé nhất
-->0<n và n bé nhất-->n=1
__________________________________________________
li-ke cho mk nhé bn
a) Để A là phân số thì
\(2n\ne0\Leftrightarrow x\ne0\)
b) \(A=\frac{n+10}{2n}=\frac{1}{2}+\frac{10}{2n}\)
c) \(A=\frac{n+10}{2n}\)
\(\Leftrightarrow A=\frac{1}{2}+\frac{5}{n}\le\frac{1}{2}\)
Để A đạt GTLN
\(\Leftrightarrow\frac{5}{n}=\frac{1}{2}\)
\(\Leftrightarrow n=10\left(T/m\right)\)
Vậy...............
Trả lời
BẠn CTV kia trả lời đúng rồi nhé
mọi người tham khảo nha
study well
GTLN = 16
n = -2
nha bạn chúc bạn học tốt nha
Lời giải:
$A=\frac{n^2+2n+1}{n^2+1}=1+\frac{2n}{n^2+1}$
$A=2+\frac{2n}{n^2+1}-1=2-(1-\frac{2n}{n^2+1})=2-\frac{n^2-2n+1}{n^2+1}$
$=2-\frac{(n-1)^2}{n^2+1}$
Vì $(n-1)^2\geq 0; n^2+1>0$ với mọi $n$ nguyên
$\Rightarrow \frac{(n-1)^2}{n^2+1}\geq 0$
$\Rightarrow A=2-\frac{(n-1)^2}{n^2+1}\leq 2$
Vậy GTNN của $A$ là $2$ khi $(n-1)^2=0$, tức là khi $n=1$.
Ta có :
A=6n−4/2n+3=6n+9−13/2n+3=3−13/2n+3
a. Để A nguyên thì 13/2n+3∈Z
⇒2n+3∈{−13;−1;1;13}
⇒2n∈{−16;−4;−2;10}
⇒n∈{−8;−2;−1;5}
b. Bổ sung điều kiện : A thuộc Z
Để A max thì 13/2n+3 min
⇔2n+3 max ∈ Z
Mà A∈Z⇔2n+3=−13 hoặc 2n+3=−1
⇒A max=3−13/−1=16⇔n=−2(tm:n∈Z)
Vậy A max = 16 <=> n = -2
max là giá trị lớn nhất
min là giá trị nhỏ nhất
HT
ta có
\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)
Để A nguyên thì 2n+3 phải là ước của 13 nên
\(\orbr{\begin{cases}2n+3=\pm1\\2n+3=\pm13\end{cases}}\Rightarrow n\in\left\{-8,-2,-1,5\right\}\)
Để A lớn nhất thì \(\frac{13}{2n+3}\text{ nhỏ nhất}\Rightarrow2n+3=-1\Leftrightarrow n=-2\)
ta có
\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)
Để A nguyên thì 2n+3 phải là ước của 13 nên
\(\orbr{\begin{cases}2n+3=\pm1\\2n+3=\pm13\end{cases}}\Rightarrow n\in\left\{-8,-2,-1,5\right\}\)
Để A lớn nhất thì \(\frac{13}{2n+3}\text{ nhỏ nhất}\Rightarrow2n+3=-1\Leftrightarrow n=-2\)
\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)
a. Để A đạt giá trị nguyên thì \(\frac{13}{2n-3}\)đạt giá trị nguyên
=> 2n - 3\(\in\){ - 13 ; - 1 ; 1 ; 13 }
=> n\(\in\){ - 5 ; 1 ; 2 ; 8 }
b. thêm điều kiện n\(\in\)Z
Để A đạt GTLN thì \(\frac{13}{2n-3}\)đạt GTNN <=> 2n - 3 đạt GTLN ( không thể tìm được n )